摘要
We theoretically studied the exciton geometric structure in layered semiconducting transition metal dichalcogenides.Based on a three-orbital tight-binding model for Bloch electrons which incorporates their geometric structures,an effective exciton Hamiltonian is constructed and solved perturbatively to reveal the relation between the exciton and its electron/hole constituent.We show that the electron−hole Coulomb interaction gives rise to a non-trivial inheritance of the exciton geometric structure from Bloch electrons,which manifests as a valley-dependent center-of-mass anomalous Hall velocity of the exciton when two external fields are applied on the electron and hole constituents,respectively.The obtained center-of-mass anomalous velocity is found to exhibit a non-trivial dependence on the fields,as well as the wave function and valley index of the exciton.These findings can serve as a general guide for the field-control of the valley-dependent exciton transport,enabling the design of novel quantum optoelectronic and valleytronic devices.
基金
H.Y.acknowledges the support by the National Natural Science Foundation of China(Grant No.12274477)
the Department of Science and Technology of Guangdong Province(No.2019QN01X061).