期刊文献+

基于储备池计算的传染病预测研究与优化

Research and optimization of infectious disease prediction based on reservoir computing
下载PDF
导出
摘要 以新冠疫情传播为例,利用储备池计算网络建立传染病预测模型。针对算法本身与测试数据的特点,采用一种独特的同步时间差预测方式:使用多数地区的疫情发展数据来预测少数地区的发展趋势。同时使用标准SIR传染病模型生成的高维数据对多种层次的储备池计算网络在预测时间线上的误差进行分析,并以减小误差为目的提出一种时变权重储备池计算网络。结果显示时变权重算法模型相比较于单一类型的储备池可以有效地提高预测精度,在测试数据集上可以将误差降低45.6%。 Taking the spread of the COVID-19 as an example,the prediction model of infectious diseases is established by using the classical reservoir computing.Based on the characteristics of the algorithm and test data,a unique synchronous time difference prediction method is adopted:using epidemic development data from most regions to predict the development trend of a few regions.Simultaneously,high-dimensional data generated by the standard SIR infectious disease model is used to analyze the errors of multiple levels of reservoir computing networks on the prediction timeline,and the time-varying weight reservoir computing network is proposed to reduce errors.The results show that the time-varying weight algorithm model can effectively improve prediction accuracy compared to a single type of reservoir computing,and can reduce the error by 45.6%on the test dataset.
作者 薛瑞 XUE Rui(College of Integrated Circuit Science and Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处 《智能计算机与应用》 2024年第6期177-182,共6页 Intelligent Computer and Applications
关键词 机器学习 储备池计算 传染病动力学模型 组合模型 machine learning reservoir computing infectious disease model composite model
  • 相关文献

参考文献3

二级参考文献30

  • 1韩敏,史志伟,郭伟.储备池状态空间重构与混沌时间序列预测[J].物理学报,2007,56(1):43-50. 被引量:23
  • 2史志伟,韩敏.ESN岭回归学习算法及混沌时间序列预测[J].控制与决策,2007,22(3):258-261. 被引量:47
  • 3H Jaeger. The "echo state" Approach to Analyzing and Training Recurrent Neural Networks [ R ]. GMD Report 148, GMD- German National Research Institute for Computer Science, 2001.
  • 4H Jaeger, H Haas. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless telecommunication [J]. Science, 2004,308 : 78 - 80.
  • 5Shi Zhiwei, Hart Min. Support vector echo-state machine for chaotic time series prediction[J]. IEEE Transactions on Neural Networks, 2007,18(2) : 359 - 372.
  • 6M Lukosevicius, H Jaeger. Reservoir computing approaches to recurrent neural network training [ J ]. Computer Science Review,2009,3(3) : 127 - 149.
  • 7Benjamin Schranwen, David Verstraeten, Jan Van Campenhout. An overview of reservoir computing: Theory, applications and implementations[A]. Proceedings of the 15th European Symposium on Artificial Neural Networks[ C ]. Proceedings of the 15th European Symposium on Artifical Neural Networks, Bruges, Belgium, 2007.471 - 482.
  • 8M Lukosevicius, H Jaeger. Overvew of Reservoir Recipes[ R ]. Technical Report, No. 11, Jacobs University, Bermen, 2007.
  • 9H Jaeger. Tutorial on training recurrent neural networks, covering BFIT, RTRL, EKF and the "Echo State Network" Approach[R]. Technical Report GMD Report 159, German National Research Center for Information Technology, 2002.
  • 10H Jaeger, M Lukosevicius, D Popovici, Udo Siewert. Optimization and applications of echo state networks with leakyintegrator neurons[J]. Neural Networks, 2007,20: 335 - 352.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部