期刊文献+

基于异构数据融合的SLAM研究综述

Overview of SLAM research based on heterogeneous data fusion
下载PDF
导出
摘要 激光与视觉SLAM技术经过几十年的发展,目前都已经较为成熟,并被广泛应用于军事和民用领域.单一传感器的SLAM技术都存在局限性,如激光SLAM不适用于周围存在大量动态物体的场景,而视觉SLAM在低纹理环境中鲁棒性差,但两者融合使用具有巨大的取长补短的潜力,激光与视觉甚至是更多传感器融合的SLAM技术将会是未来的主流方向.本文回顾了SLAM技术的发展历程,分析了激光雷达与视觉的硬件信息,给出了一些经典的开源算法与数据集.根据融合传感器所使用的算法,从传统基于不确定度、基于特征以及基于深度学习的角度详细介绍了多传感器融合方案,概述了多传感器融合方案在复杂场景中的优异性能,并对未来发展作出了展望. Laser SLAM(Simultaneous Localization and Mapping)and visual SLAM have been fully developed and widely used in military and civil fields.However,single sensor SLAM has limitations,for instance,laser SLAM is not suitable for scenes with a large number of dynamic objects around it,while visual SLAM has poor robustness in low-texture environments.Therefore,fusion of the two technologies has great potential to compensate each other,and it can be prospected that SLAM technology combining laser and vision or even more sensors will be the mainstream direction in the future.Here,we review the development of SLAM technology,analyze the hardware information of lidar and camera,and introduce some classical open-source algorithms and datasets.Furthermore,the multi-sensor fusion schemes are detailed from perspectives of uncertainty,feature and novel deep learning.The excellent performance of multi-sensor fusion schemes in complex scenes are summarized,and the future development trend of multi-sensor fusion is prospected.
作者 周铖君 陈炜峰 尚光涛 王曦杨 徐崇辉 李振雄 ZHOU Chengjun;CHEN Weifeng;SHANG Guangtao;WANG Xiyang;XU Chonghui;LI Zhenxiong(School of Automation,Nanjing University of Information Science&Technology,Nanjing 210044,China)
出处 《南京信息工程大学学报》 CAS 北大核心 2024年第4期490-503,共14页 Journal of Nanjing University of Information Science & Technology
关键词 同时定位与地图构建(SLAM) 激光SLAM 视觉SLAM 多传感器融合 移动机器人 simultaneous localization and mapping(SLAM) lidar SLAM VSLAM multi-sensor fusion mobile robot
  • 相关文献

参考文献7

二级参考文献37

  • 1宋毅,崔平远,居鹤华.一种图像匹配中SSD和NCC算法的改进[J].计算机工程与应用,2006,42(2):42-44. 被引量:29
  • 2BRADSKIG,KAEBLERA.学习OpenCV[M].于仕琪,刘瑞琪,译.北京:清华大学出版社,2009.
  • 3孙卜郊,周东华.基于NCC的快速匹配算法[J].传感器与微系统,2007,26(9):104-106. 被引量:29
  • 4王鲁佳,田龙强,胡超.无线定位技术综述[J].先进技术研究通报,2010,4(3).
  • 5Zhang S X.A new high precision Range Vernier method for phase code radar [ C ]//Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC) ,2013:341-344.
  • 6Li N,Li Y P, Hao X, et al.Influence of radar system elec- tromagnetic compatibility on radar range[ C]//2013 8th International Conference on Computer Science & Education ( ICCSE), 2013 : 870-873.
  • 7Perez P ,Jemison W D, Mullen L, et al.Techniques to en- hance the performance of hybrid lidar-radar ranging system[C]//Oceans ,2012 : 1-6.
  • 8Talampas M C R, de Dios R J C. Detection of milimeter movements using ultrasonic ranging and precise time syn- chronization in Wireless sensor networks [ C ] //2011 IEEE Sensors, 2011 : 782-785.
  • 9Kalal Z, Mikolajczyk K, Matas J.Tracking-learning-detec- tion[J].IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2010,6 ( 1 ) : 1-13.
  • 10Bouguet J Y.Pyramidal implementation of the Lucas Ka- nade feature tracker description of the algorithm [ R ]. Technical Report, Intel Microprocessor Research Labs, 1999.

共引文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部