摘要
隧道是综合交通运输体系的重要组成部分,是人民便捷生活的基本保障。为响应新工科建设号召,应对新一轮科技革命和产业变革,提升科学化建设要求,基于全卷积神经网络对隧道工程缺陷检测中表面裂缝检测方法进行了探究。通过已有照明拍摄平台采集到的隧道表面图片,采用全卷积神经网络模型对图像中裂缝识别分类,再通过Adam优化器进行细化分割。研究结果表明该模型具有一定的可行性,模型评价结果较好。输出的高精度裂缝骨架可以对缺陷类型进行判定和初步处理,为后续实际缺陷评测和修补工程提供参考。
Tunnels are an important component of the comprehensive transportation system and a basic guarantee for people’s convenient living.In response to the call for new engineering construction,the new round of technological revolution and industrial transformation,and the improvement of scientific construction requirements,this article explores the surface crack detection method in tunnel engineering defect detection based on fully convolutional neural networks.The tunnel surface images collected through existing lighting shooting platforms are used to identify and classify cracks in the images using a fully convolutional neural network,and then refined and segmented using an Adam optimizer.The research results indicate that the model proposed in this paper has a certain degree of feasibility,and the model evaluation results are good.The high-precision crack skeleton output can be used to determine and preliminarily process defect types,providing reference for subsequent actual defect evaluation and repair engineering.
作者
王振峰
徐明霞
Wang Zhenfeng;Xu Mingxia(Shaanxi Institute of Technology,Xi’an Shaanxi 710300,China)
出处
《山西建筑》
2024年第17期152-155,共4页
Shanxi Architecture
基金
陕西国防工业职业技术学院2023年度自然科学研究项目:基于北斗的地质灾害监测关键技术研究(Gfy23-21)
陕西国防工业职业技术学院2022年度自然科学研究项目:“新基建”背景下的BIM+GIS在城市规划的应用研究(Gfy22-23)。
关键词
思政改革
全卷积网络
隧道工程
缺陷检测
ideological and political reform
fully convolutional network
tunnel engineering
defect detection