摘要
世界模型是一种旨在模拟和理解环境的神经网络系统,其核心思想是通过感知和经验构建内在模型,并以此进行推理、规划和决策。研究了世界模型的发展历程、核心概念和技术实现,探讨了其在人工智能领域的重要性和潜在应用。在综合研究的基础上介绍了世界模型的基本概念、主要算法以及典型模型,如DreamerV3、STORM、MWM等算法和Sora、Gemini等具有代表性的模型;讨论了世界模型在不同领域中的实际应用,如文本和视频多模态预测、机器人控制、自动驾驶等。最后,展望了世界模型的未来发展方向。
The world model is a neural network system designed to simulate and understand the environ-ment.Its core idea is to construct an internal model through perception and experience,and use it for reasoning,planning,and decision-making.The development history,core concepts,and technical im-plementations of world models were explored.And their importance and potential applications in the field of artificial intelligence were discussed.Based on comprehensive research,the basic concepts,main al-gorithms,and typical models of world models were introduced,such as DreamerV3,STORM,MWM,Sora,Gemini.The practical applications of world models in various domains were discussed,such as multimodal prediction in text and video,robot control,and autonomous driving.Finally,the future de-velopment directions of world models were explored.
作者
王军
崔云烨
张宇航
WANG Jun;CUI Yunye;ZHANG Yuhang(Institute of Big Data Science,Zhengzhou University of Aeronautics,Zhengzhou 450015,China;Henan Daily,Zhengzhou 450014,China)
出处
《郑州大学学报(理学版)》
CAS
北大核心
2024年第5期1-12,共12页
Journal of Zhengzhou University:Natural Science Edition
基金
河南省科技攻关项目(222102210292)
河南省科技智库调研项目(HNKJZK-2021-61C)。
关键词
世界模型
算法
应用
人工智能
world model
algorithm
application
artificial intelligence