期刊文献+

基于被动视觉的三维重建技术研究进展

Progress of Study on 3D Reconstruction Technology Based on Passive Vision
下载PDF
导出
摘要 基于被动视觉的三维重建技术方法多样、应用广泛。按照不同的分类方法,对基于被动视觉的三维重建技术研究进展进行了分析总结。首先,根据采集装置的数量进行分类,介绍了基于单目视觉、双目视觉和多目视觉的三维重建技术,并对各种方法的优缺点进行比较。其次,根据不同应用方法进行分类,对运动恢复结构法和深度学习法的研究进展进行了阐述。最后,对基于被动视觉的三维重建方法进行了综合对比分析,并对三维重建的应用和发展进行了展望。 The methods of 3D reconstruction technology based on passive vision are diverse and widely used.Most of studies of 3D reconstruction technology based on passive vision were analyzed and summa-rized based on different classification methods.Firstly,according to the different number of acquisition devices,the 3D reconstruction techniques were classified into monocular vision,binocular vision and multi-version,and the advantages and disadvantages of each method were compared.Secondly,the re-search progress of structure from motion and deep learning method were described according to the classi-fication of different application methods.Finally,the 3D reconstruction technology based on passive vi-sion were compared and analyzed comprehensively,and the application and development of 3D recon-struction were explored.
作者 王兆庆 牛朝一 佘维 宰光军 梁波 易建锋 李英豪 WANG Zhaoqing;NIU Chaoyi;SHE Wei;ZAI Guangjun;LIANG Bo;YI Jianfeng;LI Yinghao(School of Cyber Science and Engineering,Zhengzhou University,Zhengzhou 450002,China;XJ Electric Co.,Ltd,Xuchang 461000,China;Zhengzhou Key Laboratory of Blockchain and Data Intelligence,Zhengzhou 450002,China;Information Management Center,Zhongyuan Oilfield Branch of SINOPEC,Puyang 457001,China)
出处 《郑州大学学报(理学版)》 CAS 北大核心 2024年第5期13-19,共7页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金项目(62206252) 河南省重点研发与推广专项(212102310039)。
关键词 三维重建 被动视觉 单目视觉 双目视觉 多目视觉 运动恢复结构 深度学习 3D reconstruction passive vision monocular vision binocular vision multi-vision struc-ture from motion deep learning
  • 相关文献

参考文献8

二级参考文献49

  • 1徐建明,汪军.基于光度立体图像三维重建的起皱织物表面形态[J].东华大学学报(自然科学版),2007,33(2):231-235. 被引量:2
  • 2贾云得.机器视觉[M].北京:科学出版社,1999.252-271.
  • 3Maybank S J,Faugeras O D.A theory of self-calibration of a moving camera.International Journal of Computer Vision,1992,8(2):123~151.
  • 4Luong Q T,Faugeras O.Self-calibration of a moving camera from point correspondences and fundamental matrices.International Journal of Computer Vision,1997,22(3):261~289,1997.
  • 5Lourakis M I.Deriche R.Camera self—calibration using the singular value decomposition of the fundamental matrix:From point correspondences to 3D measurements. INRIA,Sophia-Antipolis:Research Report 3748,1999.
  • 6Hartley R I.Kruppa’S equations derived from the fundamental matrix.IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(2):133~135.
  • 7Xu G,Noriko Sugimoto.Algebraic derivation of the Kruppa equations and a new algorithm for self-calibration of cameras.Journal of Optical Society of America,1999,16(10):2419~2424.
  • 8Ma Y et a1.Kruppa equation revisited:its renormailization and degeneracy.In:Proceedings of ECCV’2000,Dublin.
  • 9Zeller Z.Faugeras 0.Camera self-calibration from video sequences:Kruppa equations revisited.Research Report 2793,INRIA,1996.
  • 10Sterm P.A case against Kruppa’S equations for camera selfcalibration.In:Proceedings of International Conference of Image Processing,Illinois,1998.172~175.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部