摘要
本文研究了汽车销量与经济动因之间的量化关系。选择汽车产量、居民人均可支配收入以及GDP等作为经济动因,通过统计数据散点图拟合曲线,并利用主成分分析法消除多重共线性,构建了汽车物流经济动因模型。采用国际货币基金组织公布的2023-2028年中国GDP数据,使用经济动因模型进行预测,获得汽车销量预测值。计算结果显示,模型预测值与实际销量之间具有高度的数据拟合度;采用不同模型进行对比预测,误差小于1.5%,均验证了汽车物流经济动因模型的有效性。研究结果一方面揭示了汽车物流发展内部的经济驱动作用,另一方面通过可及时获取的经济数据预测未来汽车销量,以汽车销量反推对应的汽车运输需求量,得到合理的汽车需求预测结果,为提前制定符合汽车物流需求的运输决策提供数量依据。
This article studies the quantitative relationship between car sales and economic motivation.By choosing automobile output,per capita disposable income of residents and GDP as economic motivation,fitting the curve with statistical data scatter chart,and using principal component analysis to eliminate multicollinearity,an economic motivation model of automobile logistics is constructed.Using China's GDP data released by the International Monetary Fund from 2023 to 2028 and using an economic motivation model for prediction,the predicted automobile sales are obtained.The calculation results show that there is a high degree of data fit between the predicted values of the model and the actual sales volume;Using different models for comparative prediction,the error is less than 1.5%,which verifies the effectiveness of the automotive logistics economic motivation model.On the one hand,the research results reveal the internal economic driving force of automobile logistics development,and on the other hand,predict future automobile sales through timely available economic data,and deduce the corresponding automobile transportation demand based on automobile sales to obtain reasonable automobile demand prediction results,providing a quantitative basis for making transportation decisions that meet automobile logistics needs in advance.
作者
李浩月
陈迎
张琦
LI Haoyue;CHEN Ying;ZHANG Qi(School of Transportation,Beijing Jiaotong University,Beijing 100044,China;China Railway Container Transport Corp.,Ltd,Beijing 100032,China)
出处
《综合运输》
2024年第7期139-144,共6页
China Transportation Review
基金
中国国家铁路集团有限公司科技研究开发计划(P2021X013)
中铁集装箱运输有限责任公司项目(T22L01250)。
关键词
汽车物流
经济动因
运量预测
主成分分析法
铁路运输
Automotive logistics
Economic motivation
Traffic volume prediction
Principal component analysis method
Railway transportation