期刊文献+

基于GhostNet的改进模型轻量化方法

Improved model lightweighting method based on GhostNet
下载PDF
导出
摘要 为了降低深度卷积神经网络的部署成本,优化模型的检测性能,提出一种改进的轻量化主干网络算法S-GhostNet.该算法通过引入特征图生成优化的Ghost Module结构降低卷积操作的计算量,并结合改进类残差模块提升模型的精确度.S-GhostNet具有较强的即插即用性,可以应用于多数卷积神经网络模型.实验结果表明:在目标分类以及目标检测任务中,S-GhostNet相较于MobileNetV2、ShuffleNetV2以及GhostNet,模型计算量更小,模型的精确度持平,甚至更高. In order to reduce the deployment cost of deep convolutional neural networks and optimize the detection performance of the models,an improved lightweight backbone network algorithm S-GhostNet is proposed.The algorithm reduces the computational effort of convolutional operations by introducing a Ghost Module structure optimized for feature map generation.It improves the accuracy of the models by combining with an improved class of residual modules.S-GhostNet has a strong plug-and-play property and can be applied to most convolutional neural network models.Experimental results show that S-GhostNet is less computationally intensive than MobileNetV2,ShuffleNetV2 and GhostNet in target classification and target detection tasks.Also the accuracy of the model is similar or even higher.
作者 宋中山 周珊 艾勇 郑禄 肖博文 SONG Zhongshan;ZHOU Shan;AI Yong;ZHENG Lu;XIAO Bowen(School of Computer Science,South-Central Minzu University,Wuhan 430074,China;Engineering Research Center for Intelligent Management of Manufacturing Enterprises,South-Central Minzu University,Wuhan 430074,China)
出处 《中南民族大学学报(自然科学版)》 CAS 2024年第5期629-636,共8页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 湖北省科技重大专项资助项目(2020AEA011) 武汉市科技计划应用基础前沿资助项目(2020020601012267) 中央高校基本科研业务费专项资金资助项目(CZQ23040)。
关键词 目标检测 GhostNet网络 残差网络 轻量化部署 object detection GhostNet Residual Networks lightweight deployment
  • 相关文献

参考文献4

二级参考文献27

共引文献1933

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部