摘要
为了解决当前基于神经网络的纱线质量预测模型针对小样本预测精度偏低和预测精度不稳定的问题,建立了随机森林(RF)算法预测模型、多层感知机神经网络(MLP)算法预测模型和线性回归(LR)算法预测模型,就各算法模型在小样本情况下对不同数据特点的数据集的敏感性、不同数据维度的敏感性和不同训练样本数的敏感性进行了预测性能对比试验。用决定系数和均方根误差进行模型预测性能评估。试验结果表明:在小样本情况下,相比于MLP算法和LR算法,大多数情况下RF算法预测准确性更高、预测精度稳定性更好、对小训练样本量的适应性更好,具有较高的综合预测性能。
In order to solve the problems of low and unstable prediction accuracy of the current yarn quality prediction model based on neural network,three prediction models were established,including RF(random forest)algorithm prediction model,MLP(multi-layer perceptron)neural network algorithm prediction model and LR(linear regression)algorithm prediction model.Experiments were conducted to compare the three models′prediction performance on the sensitivity with small samples in different data distribution,the sensitivity in different data dimensions and the sensitivity in different training sample sizes.The coefficient of determination and root mean square error were used to evaluate the prediction performance of each model.The experimental results showed that,compared with MLP algorithm and LR algorithm,in most cases,RF algorithm had higher prediction accuracy,better stability of prediction accuracy,better adaptability to small training sample size,and higher comprehensive prediction performance.
作者
刘智玉
李学星
李立轻
陈南梁
汪军
LIU Zhiyu;LI Xuexing;LI Liqing;CHEN Nanliang;WANG Jun(Donghua University,Shanghai 201620,China;Key Laboratory of Ministry of Education for Textile Science&Technology,Shanghai 201620,China)
出处
《棉纺织技术》
CAS
2024年第8期27-34,共8页
Cotton Textile Technology
关键词
随机森林算法
多层感知机神经网络
线性回归算法
质量预测
小样本
预测模型
决定系数
random forest algorithm
multi-layer perceptron neural network
linear regression algorithm
quality prediction
small sample
prediction model
decision coefficient