期刊文献+

基于图神经网络的建筑能耗预测

Modeling of Building Energy Consumption Prediction Based on Graph Neural Networks
下载PDF
导出
摘要 在城市建筑管理中,准确预测建筑能耗对实现建筑节能和构建智慧城市具有重要意义.由于能耗数据的复杂性,长期并准确地预测建筑能耗是时间序列预测中极具有挑战性的难题之一.近年来,研究人员将神经网络模型应用于能耗预测任务,并取得了优秀的预测结果,然而建筑能耗会受到多维因素的影响,为了提高预测精度,提出了一种基于图神经网络的建筑能耗预测方法.该方法使用改进的图卷积网络来捕获时间序列的空间依赖关系,通过时间卷积模块来获取时间序列的时序依赖关系,并通过时空融合,更充分地挖掘多元时间序列中的时序特征,支持在端到端的框架中联合学习,在真实的能耗数据集上的实验结果证实了模型拥有更加优异的性能表现. In urban building management,the high proportion of building energy consumption is a huge problem at present.Accurately predicting building energy consumption is of great significance to achieve building energy conservation and the building of smart cities.Due to the complexity of energy consumption data,long-term and accurate forecasting of building energy consumption is one of the most challenging problems in time series forecasting.In recent years,researchers have applied neural network models to the task of energy consumption prediction and achieved excellent prediction results.However,building energy consumption is affected by multidimensional factors.In order to improve the prediction accuracy,this paper proposes the modeling of building energy consumption prediction based on graph neural networks.The method uses a modified graph convolutional network to capture the spatial dependencies of time series,and a temporal convolution module to obtain the temporal dependencies of time series.Through the fusion of time and space,time series features that multivariate time series can be more fully mined,and joint learning in an end-to-end framework can be supported.The experimental results on the real energy consumption dataset confirm that the model has better performance.
作者 杨振舰 卢世林 YANG Zhenjian;LU Shilin(School of Computer and Information Engineering,TCU,Tianjin 300384,China)
出处 《天津城建大学学报》 CAS 2024年第3期220-227,共8页 Journal of Tianjin Chengjian University
关键词 建筑能耗 建筑节能 图神经网络 能耗预测 空间依赖 时序特征 building energy consumption building energy efficiency graph neural network energy consumption fore-cast spatial dependence timing characteristics
  • 相关文献

参考文献4

二级参考文献24

  • 1B.W. Ang,F.Q. Zhang.A survey of index decomposition analysis in energy and environmental studies[J].Energy.2000(12)
  • 2Wenying Chen,Xiang Yin,Ding Ma.??A bottom-up analysis of China’s iron and steel industrial energy consumption and CO 2 emissions(J)Applied Energy . 2014
  • 3Loulou R,Remme U,Kanudia A,et al.Documentation for the TIMES Model. . 2005
  • 4Chen W,Yin X,Zhang H,et al.The Role of Energy Service Demand in Carbon Mitigation:Combining Sector Analysis and China TIMES-ED Modelling. Informing Energy and Climate Policies Using Energy Systems Models . 2015
  • 5Fabian Kesicki,Gabrial Anandarajah.??The role of energy-service demand reduction in global climate change mitigation: Combining energy modelling and decomposition analysis(J)Energy Policy . 2011 (11)
  • 6Fabian Kesicki.??Marginal Abatement Cost Curves: Combining Energy System Modelling and Decomposition Analysis(J)Environmental Modeling & Assessment . 2013 (1)
  • 7张晓利,贺国光,陆化普.基于K-邻域非参数回归短时交通流预测方法[J].系统工程学报,2009,24(2):178-183. 被引量:36
  • 8田慧峰,张欢,孙大明,梁云,王有为.中国大陆绿色建筑发展现状及前景[J].建筑科学,2012,28(4):1-7. 被引量:59
  • 9任忠宝,王世虎,唐宇,周海东.矿产资源需求拐点理论与峰值预测[J].自然资源学报,2012,27(9):1480-1489. 被引量:27
  • 10王有为.中国绿色建筑发展动向研究[J].施工技术,2013,42(11):5-7. 被引量:17

共引文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部