期刊文献+

室内动态场景下基于语义关联的视觉SLAM方法

Visual SLAM method based on semantic association in indoor dynamic scenes
下载PDF
导出
摘要 针对视觉SLAM在动态场景下鲁棒性不足的问题,提出一种适用于动态场景下的视觉SLAM算法——SAD-SLAM。该算法首先使用GCNv2网络进行特征提取,以获取分布均匀的特征点集合,并加快提取速度。然后使用YOLOv8-seg语义分割网络完成场景内物体的检测,并对推理得到的物体按照是否具备自主运动能力进行划分。同时提出一种语义关联方法,通过对潜在动态物体进行2D和深度层面过滤,以确定潜在动态物体运动的可能性。最后,构建了含有语义信息的稠密3D点云地图,并避免了动态物体的干扰。算法使用TUM数据集及真实场景进行实验验证,结果表明,相较于ORB-SLAM3及其他相关的动态SLAM算法,SAD-SLAM在动态场景下具有更好的定位精度。 In order to improve the robustness of visual SLAM in dynamic scenes,this proposed a new visual SLAM algorithm called SAD-SLAM.This algorithm actively extracted features using the GCNv2 network to obtain a set of evenly distributed feature points and accelerate the extraction speed.Additionally,it detected objects within the scene using the YOLOv8-seg semantic segmentation network and classified them based on their ability to move autonomously.Furthermore,it used a semantic association method to filter potential dynamic objects at both the 2D and depth levels,determining their likelihood of movement.Finally,it constructed a dense 3D point cloud map containing semantic information,avoiding interference from dynamic objects.The effectiveness of this algorithm is demonstrated through experiments using the TUM dataset and real-world scenes.The results show that compared to ORB-SLAM3 and other related dynamic SLAM algorithms,SAD-SLAM achieves better positioning accuracy in dynamic scene.
作者 李泳 刘宏杰 周永录 余映 Li Yong;Liu Hongjie;Zhou Yonglu;Yu Ying(School of Information,Yunnan University,Kunming 650000,China;Yunnan Provincial Key Laboratory of Digital Media Technology,Kunming 650223,China)
出处 《计算机应用研究》 CSCD 北大核心 2024年第8期2528-2532,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(62166048,61962060)。
关键词 视觉SLAM 深度学习 位姿估计 地图构建 室内动态场景 VSLAM deep learning pose estimation mapping indoor dynamic scene
  • 相关文献

参考文献2

二级参考文献32

  • 1ELFES A, MORAVEC H. High resolution maps from wide angle sonar [C] // Proc of the IEEE lnt Conf on Robotics and Automation.St. Louis MO: IEEE Press, 1985: 116-121.
  • 2BORENSTEIN J,EVERETT H R,FENG L,et al.Mobile robot positioning: sensors and techniques [J]. J of Robotic Systems, Special Issue on Mobile Robots,1997,14(4):231 - 249.
  • 3SMITH R, SELF M, CHEESEMAN P. A stochastic map for uncertain spatial relationships [C]//Ptrg, of the 4th Int Symposium on Robotic Research. Cambridge MA: MIT Press, 1987:467 - 474.
  • 4THRUN S, BUCKEN A. Integrating grid-based and topological maps for mobile robot navigation [ C]//Proc of the 13th National Conf on Artificial Intelligence. Portland950.
  • 5ORIOLO G, ULIVI G,VENDITTELLI M.Fuzzy maps: A new tool for mobile robot perception and planning [J]. J of Robotic System,1997,14(3) : 179 - 197.
  • 6OHYA A,NAGASHIMA Y, YUTA S. Explore unknown environment and map construction using ultrasonic sensing of normal direction of walls [C]//Proc of the IEEE Int Conf on Robotics and Automation.San Diego CA: IEEE Press, 1994:485 - 492.
  • 7CHONG K S, KLEEMAN L. Mobile-robot map building from an advanced sonar array and accurate odometry [J].Int J of Robotics Research, 1999,18(1):20-36.
  • 8KORTENKAMP D, WEYNOUTH T. Topological mapping for mobile robots using a combination of sonar and vision sensing [C]//Proc of the 12th National Conf on Artificial Intelligence. Menlo Park: AAAI Press, 1994:979 - 984.
  • 9THRUN S,FOX D, BURGARD W. A probabilistic approach to concurrent mapping and localization for mobile robots [J]. Machine Learning, 1998,31 (1-3):29 - 53.
  • 10CASTELLANOS J.ANOS J A, NEIRA J, TARDOS J D. Multisensor fusion for simultaneous localization and map building [J].IEEE Trans on Robotics and Automation,2001,17(6):908- 914.

共引文献164

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部