摘要
针对工业应用场景下缺少缺陷样本的问题,提出了一种仅需要极少缺陷样本的金属工件表面缺陷分割方法。该方法结合了图像生成技术和半监督学习策略,通过利用极少缺陷图像提取的小尺寸缺陷图像来训练缺陷生成模型,然后将生成的缺陷图像嵌入到正常图像中以实现数据增广。其次,采用半监督学习策略训练分割网络,以减小生成数据与真实数据分布之间的差异对模型的不良影响。在真实的金属工件机器视觉检测系统上的验证结果表明,半监督的训练策略提高了分割模型对真实缺陷的泛化能力,所提方法能够在仅使用5张缺陷样本图像的条件下取得较高的分割精度。
In response to the scarcity of defect samples in industrial applications,this paper proposed a method for segmenting surface defects in metal workpieces with only a minimal number of required defect samples.The method combined image gene-ration techniques with a semi-supervised learning strategy.It utilized small-sized defect patches,and extracted from a minimal number of defect images to train a defect generation model.Subsequently,the method integrated these generated defect images into normal images to facilitate data augmentation.Additionally,the method applied a semi-supervised learning strategy to train the segmentation network,aiming to mitigate the adverse effects of differences between generated and real data distributions.The experimental phase involved conducting tests on a real-world computer vision detection system for metal workpieces.The results demonstrate that the semi-supervised training strategy significantly enhances the segmentation model’s generalization ability to real defects.The method achieves high segmentation accuracy using only five defect sample images.
作者
徐兴宇
钟羽中
涂海燕
佃松宜
Xu Xingyu;Zhong Yuzhong;Tu Haiyan;Dian Songyi(College of Electrical Engineering,Sichuan University,Chengdu 610065,China)
出处
《计算机应用研究》
CSCD
北大核心
2024年第8期2540-2545,共6页
Application Research of Computers
基金
国家重点研发计划资助项目(2020YFB1709705)。
关键词
半监督学习
表面缺陷检测
图像分割
小样本
数据增广
semi-supervised learning
surface defect detection
image segmentation
few-shot
data augmentation