期刊文献+

Higher-dimensional integrable deformations of the classical Boussinesq-Burgers system

原文传递
导出
摘要 In this paper,the(1+1)-dimensional classical Boussinesq-Burgers(CBB)system is extended to a(4+1)-dimensional CBB system by using its conservation laws and the deformation algorithm.The Lax integrability,symmetry integrability and a large number of reduced systems of the new higher-dimensional system are given.Meanwhile,for illustration,an exact solution of a(1+1)-dimensional reduced system is constructed from the viewpoint of Lie symmetry analysis and the power series method.
机构地区 School of Mathematics
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第6期1-12,共12页 理论物理通讯(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.11871396,12271433).
  • 相关文献

参考文献4

二级参考文献15

  • 1E. Date, Prog. Theor. Phys. 59 (1978) 265.
  • 2X.G. Geng, J. Math. Phys. 40 (1999) 2971.
  • 3Y. Li, W.X. Ma, and J.E. Zhang. Phys. Lett. A 275 (2000) 60.
  • 4M.J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981).
  • 5S.P, Novikov, S.V. Manakov, L.P. Pitaevskii, and V.E. Zakharov, Theory of Solitons, the Inverse Scattering Methods, Consultants Bureau, New York (1984).
  • 6M. Wadati, K. Konno, and Y.H. Ichikawa, J. Phys. Soc. Jpn. 46 (1979) 1965.
  • 7C.H. Gu, H.S. Hu, and Z.X. Zhou, Darboux Transformation in Soliton Theory and Its Geometric Applications, Shanghai Scientific and Technical Publishers, Shanghai (1999).
  • 8V.B. Matveev and M.A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin (1991).
  • 9G. Neugebauer and D. Kramer, J. Phys. A 16 (1983) 1927.
  • 10G. Neugebauer and R. Meinel, Phys. Lett. A 100 (1984) 467.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部