期刊文献+

论网络犯罪案件中的“抽样取证”规则

The Rule of"Sampling Evidence Collection"in Cybercrime Cases
原文传递
导出
摘要 网络犯罪产生海量证据,导致取证工作陷入困境,抽样取证是应对取证难的有效手段之一。通过研读文献并分析适用抽样取证的网络犯罪案件裁判文书后,发现抽样取证总体呈“不需要用”与“不敢用”的实践样态,究其原因在于抽样取证的属性不明确,适用条件、主体、方法与具体程序未成体系化而“不好用”。在明确抽样取证属性是建立在可反驳推定的基础上的证据生成方法后,作为补充使用的抽样取证应将海量且同质作为适用条件,针对不同证据种类选择随机抽样或非随机抽样两种不同抽样方法且设置保障抽样取证合理性的具体程序,使其在网络犯罪案件中的应用更具体系性和规范性,从而顺利解决网络犯罪案件证据海量化的取证问题。 Cybercrime generates a vast amount of evidence,leading to difficulties in obtaining evidence.Sampling is one of the effective methods toaddress these difficulties in obtaining evidence.After studying the literature and analyzing the adjudication documents of cybercrime cases applying sampling evidence,it is found that sampling evidence in general is a practice pattern of"not needing to be used"and"not daring to be used"This is due to the fact that the attributes of sampling evidence are not clear,and that the applicable conditions,subjects,methods and specific procedures have not been systematized and are"not good to be used".And specific procedures are not systematic and"not good to use"By clarifying that sampling is an evidence generation method based on rebuttable presumption,it becomes evident that sampling should be used as a supplementary method under conditions of mass and homogeneous data.Depending on the type of evidence,either random sampling or non-random sampling should be selected.Establishing specific procedures to ensure the reasonableness of sampling will make the application in cybercrime cases more systematic and standardized,thereby effectively addressing the issue of evidence collection in cybercrime cases.
作者 李影 王晨 LI Ying;WANG Chen(Department of Law,Criminal Investigation Police University of China,Shengyang Liaoning 110854)
出处 《中国刑警学院学报》 2024年第3期109-118,共10页 Journal of Criminal Investigation Police University of China
基金 2022年度辽宁省社会科学规划重点基金项目(编号:L22AFX005)。
关键词 网络犯罪 海量证据 抽样取证 cybercrime massive evidence sampling evidence
  • 相关文献

参考文献14

二级参考文献129

共引文献199

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部