摘要
[目的/意义]识别和量化战略性新兴产业与传统产业之间的知识耦合,是理解其协同创新机制、促进产业融合与升级的关键任务。[方法/过程]基于知识互补性与替代性,文章提出一种在知识网络层面测度战略性新兴产业与传统产业之间知识耦合的方法,并通过隐马尔可夫模型发现两种知识耦合模式:融合式知识耦合与替代式知识耦合。选取2000—2020年间的全球新一代信息技术和制造业的专利数据进行实证检验。[结果/结论]研究发现,融合式知识耦合同时具有较高的产业间知识互补和知识替代,而替代式知识耦合表现为低知识互补和高知识替代。新一代信息技术和制造业之间的替代式知识耦合模式呈现出从减弱到稳定,再从稳定到加强的演化趋势。[局限]产业创新知识网络使用专利分类号的共现数据进行构建,缺少对耦合知识的语义层面的深入解读。未来可以进一步融合专利的语义信息,以更全面地反映产业间知识耦合模式以及具体内容。
[Purpose/significance]Identifying and quantifying the knowledge coupling between strategic emerging industries and traditional industries is a key task to understand their co-innovation mechanism and promote industrial integration and upgrading.[Method/process]Based on the knowledge complementarity and substitutability,this paper proposes a method to measure the knowledge coupling between strategic emerging industries and traditional industries at the knowledge network level,and discovers two modes of knowledge coupling through the Hidden Markov Model:convergence knowledge coupling and substitution knowledge coupling.Global patent data of new-generation information technology and manufacturing industries between 2000 and 2020 are selected for empirical examination.[Result/conclusion]It is found that convergence knowledge coupling has both high inter-industry knowledge complementarity and knowledge substitutability,while substitution knowledge coupling exhibits low knowledge complementarity and high knowledge substitutability.The substitution knowledge coupling between new-generation information technology and manufacturing industry shows an evolutionary trend from weakening to stabilizing and then from stabilizing to strengthening.[Limitations]The industrial innovation knowledge network is constructed using the co-occurrence data of patent’s IPC,which lacks an in-depth interpretation of the semantic level of coupled knowledge.In the future,the semantic information can be further integrated to more comprehensively reflect the inter-industry knowledge coupling and specific content.
作者
王嘉杰
李天逸
孙建军
吴洁
刘鑫慧
Wang Jiajie;Li Tianyi;Sun Jianjun;Wu Jie;Liu Xinhui(Laboratory of Data Intelligence and Interdisciplinary Innovation,Nanjing University,Jiangsu Nanjing 210023;School of Information Management,Nanjing University,Jiangsu Nanjing 210023)
出处
《情报理论与实践》
北大核心
2024年第8期63-75,共13页
Information Studies:Theory & Application
基金
2023年度国家社会科学基金重大项目“前沿交叉领域识别与融合创新路径与预测方法研究”支持,项目编号:23&ZD225。
关键词
战略性新兴产业
传统产业
知识耦合
隐马尔可夫模型
strategic emerging industries
traditional industries
knowledge coupling
hidden markov model