摘要
阐述一种融合通道注意力机制和多尺度扩张卷积的新颖显著性目标检测方法(AMESNet)。首先,为了重点突出图像显著性目标的边缘语义信息,AMESNet构建了高效通道注意力模块,以自适应的选择跨通道互补信息。其次,为了获取边缘结构清晰并且定位准确的显著图,该方法利用多尺度扩张卷积模块增加模型的感受野范围,提取低级语义信息,进行边界锐化。
This paper describes a novel salient object detection method(AMESNet)based on the fusion of channel attention mechanism and multi-scale expansion convolution.Firstly,in order to highlight the edge semantic information of the image saliency object,AMESNet constructs an efficient channel attention module to adaptively select cross-channel complementary information.Secondly,in order to obtain a significant map with clear edge structure and accurate positioning,this method uses multi-scale expansion convolution module to increase the range of receptive fields of the model,extract low-level semantic information,and sharpen boundaries.
作者
林元元
鲁大营
包新月
王健如
王丽慧
张雅
LIN Yuanyuan;LU Daying;BAO Xinyue;WANG Jianru;WANG Lihui;ZHANG Ya(School of Cyberspace Security,Qufu Normal University,Shandong 273165,China)
出处
《电子技术(上海)》
2024年第5期35-37,共3页
Electronic Technology