期刊文献+

含能离子盐TKX-50状态方程及热力学性质的第一性原理研究

First-principles Study on State Equation and Thermodynamic Properties of Energetic Ionic Salt TKX-50
原文传递
导出
摘要 采用基于密度泛函理论的第一性原理,结合德拜模型和晶格动力学理论,对二羟基联四唑羟铵盐(TKX-50)在温度和压力加载下的热力学性质和状态方程进行研究。计算表明:TKX-50在零温零压下的晶格参数与实验数据吻合较好。在此基础上分析了TKX-50在不同温度和压力下的晶格结构演化及相关热力学性质。结果表明:TKX-50晶格沿a轴方向最难压缩;定容热容受压强和温度强烈的影响;德拜温度、格林艾森常数、热膨胀系数受压强影响较大。计算结果不仅揭示了温度和压力对TKX-50热力学性质的影响规律,为预测和解释其温压性能提供指导,也能够为TKX-50工程应用和风险评估提供必要的理论支撑。 By employing first-principles based on density functional theory,combined with the Debye model and lattice dynamics theory,the themodynamic properties and state equation of TKX-50 under high temperture and pressure are calculated.It is shown that,the calculated lattice constants of TKX-50 agree well with the available experimental and other theoretical data.And then we calculate the lattice structure and relate thermodynamic properties under different temperature and pressure.The results show that the lattice of TKX-50 is the most difficult to compress along the a-axis;the thermal capacity is influenced by temperature and pressure strongly;the Debye temperature,Gruneison constant,and the thermal expansion coefficient changes rapidly with temperature.The results of this paper not only reveal how the thermodynamic properties of TKX-50 change with temperature and pressure,a guide to predict and explain its temperature pressure performance,but also provide necessary theoretical support,for the engineering application and risk assessment of TKX-50.
作者 周梦 陶应奇 周晓云 张宇龙 程才 ZHOU Meng;TAO Yingqi;ZHOU Xiaoyun;ZHANG Yulong;CHENG Cai(Department of Basics,Officers College of PAP,Chengdu,Sichuan 610213,China;School of Physics and Electronic Engineering,Sichuan Normal University,Chengdu,Sichuan 610101,China)
出处 《计算物理》 CSCD 北大核心 2024年第4期487-493,共7页 Chinese Journal of Computational Physics
基金 国家自然科学基金青年科学基金项目(11904244)资助。
关键词 高温高压 TKX-50 热力学性质 第一性原理 high temperature and high pressure TKX-50 thermodynamic properties first-principles
  • 相关文献

参考文献4

二级参考文献30

  • 1Klapotke, T. M. Struct. Bond. 2007, 125, 85.
  • 2Steinhauser, G.; Klapotke, T. M. Angew. Chem., Int. Ed. 2008, 47, 2.
  • 3Singh, R. P.; Verma, R. D.; Meshri, D Angew. Chem., Int. Ed. 2006, 45, 3584.
  • 4Singh, R. P.; Gao, R. H.; Meshri, D. Struct. Bond. 2007, 125, 35.
  • 5T.; Shreeve, J. M T.; Shreeve, J. M Eicher, T.; Hauptmann, S.; Li, R. T.; Ge, Z. M.; Wang, X. The Chemical of Heterocycles: Structures, Reactions, Synthesis and Applications, Chemical Industry Press, Beijing, 2005, p. 158 (in Chinese).
  • 6Xue, H.; Gao, H.; Twamley, B.; Shreeve, J. M. Chem. Mater 2007, 19, 1731.
  • 7Gao, H.; Huang, Y.; Ye, C.; Twamley, B.; Shreeve, J. M Chem. Eur. J. 2008, 14, 5596.
  • 8Gao, H.; Wang, R.; Twamley, B.; Hiskey, M. A.; Shreeve, J M. Chem. Commun. 2006, 4007.
  • 9Wang, R.; Jin, C.M.; Twamley B.; Shreeve, J.M. lnorg Chem. 2006,45,6396.
  • 10Wang, R.; Guo, Y.; Zeng, Z.; Twamley, B.; Shreeve, J.M Chem. Eur. J 2009,15,2625.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部