摘要
本文考虑求解一类不可分的非凸非光滑优化问题,该问题的目标函数由如下两部分组成:关于全局变量不可分的正常下半连续双凸函数,与两个关于独立变量的无利普希茨连续梯度的非凸函数.本文提出广义的惯性交替结构化邻近梯度下降算法(general inertial alternating structure-adapted proximal gradient descent algorithm,简记为GIASAP算法),该算法框架不仅引入非线性邻近正则项与惯性加速技巧,同时采用常数步长与动态步长两种策略.本文证明了GIASAP算法O(1/k)的非渐近收敛率,以及当目标函数具有Kurdyka-Łojasiewicz性质时,由GIASAP算法生成的有界序列全局收敛到问题的驻点.最后,本文通过数值实验验证了算法的可行性与有效性.
This paper considers the nonseparable nonconvex nonsmooth minimization problem,whose objective function is the sum of a proper lower semicontinuous biconvex function of the entire variables,and two nonconvex functions of their private variables without the global Lipschitz gradient continuity.This paper develops a general inertial alternating structureadapted proximal gradient descent algorithm(GIASAP for short),which not only adopts nonlinear proximal regularization and inertial strategies,but also utilizes constant and dynamical step sizes.The worst case O(1/k)nonasymptotic convergence rate of GIASAP algorithm is established.Furthermore,the bounded sequence generated by GIASAP globally converges to a critical point under the condition that the objective function possesses the Kurdyka-Łojasiewicz property.In addition,numerical results demonstrate the feasibility and effectiveness of the proposed algorithm.
作者
高雪
王坛兴
王凯
董小妹
Gao Xue;Wang Tanxing;Wang Kai;Dong Xiaomei(Institute of Mathematics,Hebei University of Technology,Tianjin 300401,China;School of Mathematical Sciences,Jiangsu Key Lab for NSLSCS,Nanjing Normal University,Nanjing 210023,China;School of Mathematics and Statistics,Nanjing University of Science and Technology,Nanjing 210094,China;College of Sciences,Shanghai Institute of Technology,Shanghai 201418,China)
出处
《计算数学》
CSCD
北大核心
2024年第3期312-330,共19页
Mathematica Numerica Sinica
基金
国家自然科学基金(12201173,11901294)
河北省高等学校科学技术研究项目(QN2022031)资助.