摘要
近年来,随着渔业生产力的提高及不断膨胀的人口对食物的需求增长,人类对渔业资源的开发力度不断加大,过度捕捞现象随处可见。鉴于渔业资源面临的严峻挑战,有必要对渔业资源的开发进行更加科学有效的管理,从而应对日益严峻的生态环境以及正在衰竭退化的渔业资源考虑到市场价格变动对于渔业资源开发的影响,建立了一个具有价格变动渔业资源开发模型.首先讨论了平衡点的存在性.接着通过分析特征方程根的情况,研究了平衡点的稳定性.最后通过数值仿真的方法验证了理论分析的正确性.研究结果表明价格变化对于模型的动力学有着很大的影响,价格的变动以及捕捞成本会影响捕捞活动的进行与否。
In recent years,with the improvement of fishery productivity and the growing de-mand for food from a constantly expanding population,human exploitation of fishery resources has been intensifying,leading to widespread instances of overfishing.Given the severe chal-lenges faced by fishery resources,it is necessary to manage the development of these resources in a more scientifically and effectively manner in order to address the increasingly urgent eco-logical environment and the declining and deteriorating fishery resources.This study considers the impact of market price fluctuations on the development of fishery resources and establishes a model for fishery resource development with price fluctuations.Firstly,the existence of equi-librium points is discussed.Then,the stability of the equilibrium points is investigated by analyzing the roots of the characteristic equation.Finally,the correctness of the theoretical analysis is verified through numerical simulations.The results of the study indicate that price fuctuations have a significant impact on the dynamics of the model,and changes in price and fishing costs can affect whether or not fishing activities take place.
作者
方瑜
张学兵
李顺杰
FANG Yu;ZHANG Xue-bing;LI Shun-jie(School of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing 210044,China;Jiangsu International Joint Laboratory on System Modeling and Data Analysis,Center for Applied Mathematics of Jiangsu Province,Nanjing University of Information Science and Technology,Nanjing 210044,China)
出处
《数学的实践与认识》
北大核心
2024年第7期169-178,共10页
Mathematics in Practice and Theory
基金
国家自然科学基金(12271261)
国家级大学生创新训练项目:时空时滞种群生态传染病系统分析与控制研究(202310300044Z)。
关键词
渔业模型
过度捕捞
价格变动
稳定性
fishery model
overfishing
price fluctuations
stability