期刊文献+

基于油电混动六旋翼无人机的模糊PID飞行控制策略研究

Fuzzy PID Flight Control Strategy Based on Oil-Electric Hybrid Six-Rotor UAV
下载PDF
导出
摘要 针对油电混动六旋翼无人机飞行因燃油消耗而产生变载荷,进而导致飞行姿态响应迟钝的现象,设计出结合能量管理的模糊PID(proportion integration differentiation,PID)飞行控制策略。首先,以最大需求功率为2.0 kW、质量为18 kg的油电混动六旋翼无人机为研究对象,建立MATLAB/Simulink模型;其次,利用模糊算法对变载荷的质量和转动惯量进行模糊化-隶属度函数-规则库-反模糊化处理,实时调整PID值,解决姿态响应迟钝的问题;最后,设计阶梯和巡航工况,观测无人机的姿态响应情况。结果表明:燃油消耗会在姿态变动时,对位置偏移产生不利影响;与普通PID相比,提出的飞行控制策略会实时修正不同载荷下的PID参数,当飞行状况改变时,位置峰值偏移量为6 m,稳定性能良好;同时,在偏移修正方面,模糊PID可在20 s内对偏移量进行修正,并且能持续保持现有姿态,表明模糊PID飞行控制策略具有优异的跟随性能。 Aiming at the phenomenon of variable loads generated by fuel consumption during the flight of oil-electric hybrid six-rotor unmanned aerial vehicles(UAVs),which leaded to sluggish flight attitude response,a fuzzy proportion integration differentiation(PID)flight control strategy combined with energy management was designed.Firstly,the oil-electric hybrid six-rotor UAV with a maximum demand power of 2.0 kw and a mass of 18 kg was taken as the research object to establish the MATLAB/Simulink model.Secondly,the fuzzy algorithm was used to carry out the fuzzification-membership functions-rule libraries-anti-fuzzification processing of the mass of variable load and inertia of rotation,adjust the PID value in real time and solve the problem of sluggish attitude response.Finally,the ladder and cruise conditions were designed to observe the attitude response of the UAV.The results show that the fuel consumption will have an adverse effect on the position offset when the attitude changes.Compared with the ordinary PID,the proposed flight control strategy will correct the PID parameters under different loads in real time.When the flight condition changes,the position peak offset is 6m,and the stability performance is good.At the same time,in terms of offset correction,the fuzzy PID can correct the offset within 20 s,and can continue to maintain the existing attitude,which reflects that the fuzzy PID flight control strategy has excellent tracking performance.
作者 陈伟 涂钏 刘建宏 闫志伟 任毅 居婷 CHEN Wei;TU Chuan;LIU Jianhong;YAN Zhiwei;REN Yi;JU Ting(School of Aeronautics,Chongqing Jiaotong University,Chongqing 400074,China;School of Energy and Power,Nanjing University of Aeronautics and Astronautics,Nanjing 210000,Jiangsu,China;Chongqing Key Laboratory of Green Aviation Energy and Power,Chongqing 401130,China)
出处 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第8期124-132,共9页 Journal of Chongqing Jiaotong University(Natural Science)
基金 重庆市自然科学基金项目(CSTB2022NSCQ-LZX0068)。
关键词 航空工程 油电混动系统 无人机 变载荷 飞行控制 模糊逻辑 aeronautic engineering oil-electric hybrid system UAV variable loads flight control fuzzy logic
  • 相关文献

参考文献6

二级参考文献44

  • 1OSMIC N, VELAGIC J, KONJICIJA S, et al. Genetic algorithm based identification of a nonlinear 2DOF helicopter model [ C ]// Mediterranean Conference on Control & Automation. Marrakeeh, Morocco: IEEE, 2010:333-338.
  • 2INOUE A, DENG M, HARIMA T, et al. Attitude control system design of a helicopter experimental system ~ C ~//IEEE Internation- al Conference on Industrial Technology. Vienna, Austria: IEEE, 2005 : 1240 - 1245.
  • 3KUTAY A T, CALISE A J, IDAN M, et al. Experimental results on adaptive output feedback control using a laboratory model heli- copter [ J ]. IEEE Transactions on Control Systems Technology. 2005, 13(2): 196-202.
  • 4WU Y Q, YU X, MAN Z H. Terminal sliding mode control design for uncertain dynamic systems [ J ]. Systems and Control Letters. 1998,34(5) :281 -287.
  • 5刘金琨.滑模变结构控制Maflab仿真[M].北京:清华大学出版社.2012.
  • 6CHO S, MCCLAROCH N. Feedback control of a space vehicle with unactuated fuel slosh dynamics [ C ]//AIAA Guidance Navi- gation and Control Conference. Denver, CO, USA : A1AA,2000 : AIAA2000 - 4046.
  • 7KUANG J, LEUNG A Y. Feedback for attitude control of liquid - filled spacecraft[ J ]. Journal of Guidance Control and Dynamics. 2001,24( 1 ) : 46 -55.
  • 8KEVIN J W. Robust Nonlinear Attitude Control with Disturbance Compensation[D]. Florida: University of Florida. 2003.
  • 9谢勇,陈照海,陈万法.某无人直升机高度测量系统融合方法[J].兵工自动化,2010,29(2):85-86. 被引量:9
  • 10刘富,童明波,赵宏韬.飞机副油箱液体晃动动力学分析[J].航空计算技术,2011,41(3):54-56. 被引量:7

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部