期刊文献+

异方差大数据下联合均值与方差模型的α-最优子抽样 被引量:1

α-Optimal Subsampling for Joint Mean and Variance Models Under Heteroscedasticity Big Data
原文传递
导出
摘要 随着信息技术的发展,经济、金融、工业等领域产生了异常庞大的数据,这些数据往往具有异方差特性,传统统计模型和统计方法难以解决该类大数据的建模问题.子抽样是处理大数据的重要方法.文章针对联合均值与方差模型,在异方差大数据环境下研究了子抽样问题.文章主要贡献如下:对具有异方差特性的大数据建立联合均值与方差模型,在一定条件下,基于A-最优准则和L-最优准则讨论了子样本参数估计的一致性和渐近正态性;首次提出了异方差大数据下联合均值与方差模型的α-最优子抽样算法.数值模拟和实证分析的结果表明,该抽样算法能提高估计的精确性,减少计算成本. With the development of information technology,an unusually large amount of data is generated in economy,finance,industry and other fields,and these data have the characteristics of heteroscedasticity.The traditional statistical models and statistical methods can not solve the heteroscedasticity modeling problem in big data.Subsampling is an important method to deal with big data.In this paper,we study the subsampling for the joint mean and variance models in the heteroskedastic big data environment.The main contributions of this paper are as follows:The joint mean and variance models are developed for heteroscedasticity big data,and the consistency and asymptotic normality of the subsample estimator are proven based on the-optimality criterion and the-optimality criterion under certain conditions;An-optimal subsampling algorithm of the joint mean and variance models for heteroscedasticity big data is proposed.The results of numerical simulations and a real example show that the sampling algorithm improves estimation accuracy and reduces computational costs.
作者 熊正榆 吴刘仓 杨兰军 XIONG Zhengyu;WU Liucang;YANG Lanjun(Faculty of Science,Kunming University of Science and Technology,Kunming 650500;Center for Applied Statistics,Kunming University of Science and Technology,Kunming 650500)
出处 《系统科学与数学》 CSCD 北大核心 2024年第7期2146-2172,共27页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(12261051) 云南省基础研究专项重点项目(202401AS070061) 昆明理工大学哲学社会科学科研创新团队(CXTD2023005)资助课题。
关键词 异方差大数据 联合均值与方差模型 α-最优子抽样 Heteroscedasticity big data joint mean and variance models -optimal subsampling
  • 相关文献

参考文献4

二级参考文献39

  • 1Jiang J.REML estimation: asymptotic behavior and related topics. The Annals of Statistics . 1996
  • 2Wang Y G,Zhao Y.A modified pseudolikelihood approach for analysis of longitudinal data. Biometrics . 2007
  • 3Murray Aitkin.Modelling variance heterogeneity in normal regreesion using GLIM. Applied Statistics . 1987
  • 4Akaike H.Information theory as an extension of the maximum likelihood principle. Second International Symposium on Information Theory . 1973
  • 5E.Candes,T.Tao.The Dantzig selector:statistical estimation when p is much large than n (withdiscussion). The Annals of Statistics . 2007
  • 6G. Claeskens,N. L. Hjort.The focused information criterion (with discussion). Journal of the American Statistical Association . 2003
  • 7M.Durban,I.D.Cuttie.Adjustment of the profile likelihood for a class of normal regression models. Scandinavian Journal of Statistics . 2000
  • 8B. Efron,T. Hastie,I. Johnstone,R. Tibshirani.Least Angle Regression. The Annals of Statistics . 2004
  • 9J. Q. Fan,R. Li.Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association . 2001
  • 10Fan, J,Li, R.Statistical challenges with high dimensionality: feature selection in knowledge discovery. Proceedings of the International Congress of Mathematicians . 2006

共引文献16

同被引文献20

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部