期刊文献+

Spatial covariant gravity with two degrees of freedom in the presence of an auxiliary scalar field:Perturbation analysis

原文传递
导出
摘要 We investigate a class of gravity theories respecting only spatial covariance,termed spatially covariant gravity,in the presence of an auxiliary scalar field.We examine the conditions on the Lagrangian required to eliminate scalar degrees of freedom,allowing only two tensorial degrees of freedom to propagate.Instead of strict constraint analysis,in this paper,we employ the perturbation method and focus on the necessary conditions to evade the scalar mode at the linear order in perturbations around a cosmological background.Beginning with a general action and solving the auxiliary perturbation variables in terms of a would-be dynamical scalar mode,we derive the condition to remove its kinetic term,thus ensuring that no scalar mode propagates.As an application of the general condition,we study a polynomial-type Lagrangian as a concrete example,in which all monomials are spatially covariant scalars containing two derivatives.We find that the auxiliary scalar field is essential,and new terms in the Lagrangian are allowed.Our analysis provides insights into constructing gravity theories with two degrees of freedom in the extended framework of spatially covariant gravity.
作者 Zhi-Chao Wang Xian Gao 王志超;高显
出处 《Chinese Physics C》 SCIE CAS CSCD 2024年第8期198-212,共15页 中国物理C(英文版)
基金 Supported by theNatural Science Foundation of China(11975020)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部