期刊文献+

超快凝聚态物理中激发态电子分类及其非平衡态

Ultrafast condensed matter physics:Classification of excited state electrons and nonequilibrium states
原文传递
导出
摘要 近年来,凝聚态物理一个发展较快的方向是超快物理现象和超快动力学研究,超快凝聚态物理研究量子材料的激发态和非平衡态超快动力学以获得各种量子物态的本征属性,并加以调控.其一般采用超快激光脉冲作为激发源,以超高时间分辨为典型实验特征,探测出射的光子或电子.随着该领域的发展,产生了许多不同于传统基态研究的有关电子的物理概念.准确理解、定义、分类这些概念对于顺利开展超快凝聚态物理研究显得日益重要.本文以准粒子超快弛豫过程为例,分类辨析光生载流子(photo-carrier)、激光加热的电子(laser-heated electron)、热电子(hot electron)、温电子(thermal electron)、光电子(photo-electron)等概念的异同,并加以对比和总结;在此过程中也涉及基态(ground state)、激发态(excited state)、非平衡态(non-equilibrium state)、瞬态(transient state)、亚稳态(metastable state)、量子隐态(hidden quantum state)、稳态(steady state)和平衡态(equilibrium state)等物理概念.本文以水的不同自然形态作为类比,形象地展示上述概念的异同,方便读者正确使用它们,希望能有助于超快凝聚态物理的顺利发展. Ultrafast phenomena and dynamics have been a rapidly developing field of condensed matter physics in recent years.“Ultrafast condensed matter physics”aims to study the ultrafast dynamics of quantum materials in the excited state and non-equilibrium state,thus revealing the intrinsic properties and realizing control of the quantum states.It employs ultrafast light pulses to excite the condensed matter,in ultrahigh temporal resolution,and detect the emitted photons or electrons.With the development of this field,many new physical concepts about electrons have emerged,which are different from conventional electrons in equilibrium states.Accurately understanding,defining,and classifying these concepts are becoming increasingly important for the development of ultrafast condensed matter physics research.Taking the ultrafast quasiparticle relaxation process as an example,we classify and compare the similarities and differences of photo-carrier,laser-heated electron,hot electron,thermal electron,photo-electron,etc.The classification also involves many physical concepts of the states,such as ground state,excited state,non-equilibrium state,transient state,metastable state,hidden quantum state,steady state,and equilibrium state.Using the different natural forms of water as an analogy,we illustrate the similarities and differences of the above concepts vividly.Our work may facilitate colleagues in understanding these concepts,and pave a way for the smooth development of ultrafast condensed matter physics.The ultrafast relaxation process of non-equilibrium state carriers(including electrons,holes,excitons,etc.)occurs on the time scale of femtosecond to nanosecond.In analogy to the circulation of water between the sea and sky,we vividly understand several important concepts of the carrier types,and clearly distinguish them.Specifically,by absorbing the photon energy,valance electrons are excited to become the photo-carriers,which are far above the Fermi surface.Such excited states are non-equilibrium states.The excited state photo-carriers will relax,during which the electrons exchange energy with lattice phonons and other types of elementary excitations,if any.The photo carriers have a separate temperature from that of the lattice.Upon relaxation,when they reach thermal equilibrium with local lattice ions,they become laser-heated electrons.When the laser-heated electrons further exchange energy with a wider range of lattice ions,the temperature is reduced and they become hot electrons.Finally,when the electrons thermalize with a wider range of lattice ions to assume ambient temperature,they become thermal electrons.Note that photo-carriers do not satisfy the Fermi-Dirac distribution.This is very different from the laser-heated electrons,hot electrons,or thermal electrons.The relaxation process includes but is not limited to electron-phonon coupling and phonon-phonon scattering.Photo-carriers may have coherence among them,but the other three concepts do not,as reflected by their names(heat,hot,thermal,etc.).Although laser-heated electrons and hot electrons also belong to excited state electrons to a certain extent,excited state electrons in ultrafast spectroscopy refer more to photo-carriers.The concept of laser-heated electrons emphasizes that electrons are heated by light excitation,while hot electrons emphasize that the electron temperature is higher than the ambient temperature,and electrons that are excited by other forms(such as electric fields)can also be called hot electrons.Thermal electrons are obtained from the ambient finite temperature and do not require external heating.The biggest difference between hot electrons and thermal electrons is whether the temperature is higher than the ambient temperature.Thermal electrons can be regarded as ground state electrons to some extent.Photo electrons have energies large enough to escape the solid.
作者 郝文杰 翟燕妮 代卓君 张红 赵继民 Wenjie Hao;Yanni Zhai;Zhuojun Dai;Hong Zhang;Jimin Zhao(College of Physics,Sichuan University,Chengdu 610065,China;Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;Songshan Lake Materials Laboratory,Dongguan 523808,China)
出处 《科学通报》 EI CAS CSCD 北大核心 2024年第21期3177-3184,共8页 Chinese Science Bulletin
基金 国家重点研发计划(2021YFA1400201,2017YFA0303600) 北京市自然科学基金(4191003) 中国科学院稳定支持基础研究领域青年团队计划(YSBR-059) 中国科学院战略性先导科技专项(XDB30000000) 中国科学院对外合作项目(GJHZ1826)和中国科学院创新交叉团队项目资助。
关键词 超快凝聚态物理 非平衡态 光生载流子 热电子 温电子 激发态 ultrafast condensed matter physics non-equilibrium state photo-carrier hot electron thermal electron excited state
  • 相关文献

参考文献3

二级参考文献3

  • 1Editorial Announcement: Withdrawal of Chin. Phys. Lett. 24 (2007)1821 by M. Aygun et al.[J].Chinese Physics Letters,2008,25(8):3094-3094. 被引量:27
  • 2麦迪娜,M.N.Achasov,艾小聪,O.Albayrak,M.Albrecht,D.J.Ambrose,A.Amoroso,安芬芬,安琪,白景芝,R.Baldini Ferroli,班勇,D.W.Bennett,J.V.Bennett,M.Bertani,D.Bettoni,边渐鸣,F.Bianchi,E.Boger,I.Boyko,R.A.Briere,蔡浩,蔡啸,O.Cakir,A.Calcaterra,曹国富,S.A.Cetin,常劲帆,G.Chelkov,陈刚,陈和生,陈海云,陈江川,陈玛丽,陈申见,谌炫,陈旭荣,陈元柏,程和平,褚新坤,G.Cibinetto,代洪亮,代建平,A.Dbeyssi,D.Dedovich,邓子艳,A.Denig,I.Denysenko,M.Destefanis,F.De Mori,丁勇,董超,董静,董燎原,董明义,杜书先,段鹏飞,范荆州,方建,房双世,方馨,方易,L.Fava,F.Feldbauer,G.Felici,封常青,E.Fioravanti,M.Fritsch,傅成栋,高清,高鑫磊,高旭阳,高原宁,高榛,I.Garzia,K.Goetzen,龚文煊,W.Gradl,M.Greco,顾旻皓,顾运厅,管颖慧,郭爱强,郭立波,郭玥,郭玉萍,Z.Haddadi,A.Hafner,韩爽,郝喜庆,F.A.Harris,何康林,T.Held,衡月昆,侯治龙,胡琛,胡海明,胡继峰,胡涛,胡誉,黄光明,黄光顺,黄金书,黄性涛,黄勇,T.Hussain,纪全,姬清平,季晓斌,季筱璐,姜鲁文,江晓山,蒋兴雨,焦健斌,焦铮,金大鹏,金山,T.Johansson,A.Julin,N.Kalantar-Nayestanaki,康晓琳,康晓珅,M.Kavatsyuk,B.C.Ke,P.Kiese,R.Kliemt,B.Kloss,O.B.Kolcu,B.Kopf,M.Kornicer,W.Kühn,A.Kupsc,J.S.Lange,M.Lara,P.Larin,C.Leng,李翠,李澄,李德民,李飞,李峰云,李刚,李海波,李家才,李瑾,李康,李科,李蕾,李培荣,李腾,李卫东,李卫国,李晓玲,李小梅,李小男,李学潜,李志兵,梁昊,梁勇飞,梁羽铁,廖广睿,D.X.Lin(lin),刘北江,刘春秀,刘栋,刘福虎,刘芳,刘峰,刘宏邦,刘欢欢,刘汇慧,刘怀民,刘杰,刘建北,刘觉平,刘晶译,刘凯,刘魁勇,刘兰雕,刘佩莲,刘倩,刘树彬,刘翔,刘玉斌,刘振安,刘智清,H.Loehner,娄辛丑,吕海江,吕军光,卢宇,卢云鹏,罗成林,罗民兴,T.Luo,罗小兰,吕晓睿,马凤才,马海龙,马连良,马秋梅,马天,马旭宁,马骁妍,F.E.Maas,M.Maggiora,冒亚军,毛泽普,S.Marcello,J.G.Messchendorp,闵建,R.E.Mitchell,莫晓虎,莫玉俊,C.Morales Morales,K.Moriya,N.Yu.Muchnoi,H.Muramatsu,Y.Nefedov,F.Nerling,I.B.Nikolaev,宁哲,S.Nisar,牛顺利,牛讯伊,馬鵬,欧阳群,S.Pacetti,潘越,P.Patteri,M.Pelizaeus,彭海平,K.Peters,J.Pettersson,平加伦,平荣刚,R.Poling,V.Prasad,祁鸣,钱森,乔从丰,秦丽清,覃拈,秦小帅,秦中华,邱进发,K.H.Rashid,C.F.Redmer,M.Ripka,荣刚,Ch.Rosner,阮向东,V.Santoro,A.Sarantsev,M.Savrie,K.Schoenning,S.Schumann,单葳,邵明,沈成平,沈培迅,沈肖雁,盛华义,宋维民,宋欣颖,S.Sosio,S.Spataro,孙功星,孙俊峰,孙胜森,孙勇杰,孙永昭,孙志嘉,孙振田,唐昌建,唐晓,I.Tapan,E.H.Thorndike,M.Tiemens,M.Ullrich,I.Uman,G.S.Varner,王斌,王东,王大勇,王科,王亮亮,王灵淑,王萌,王平,王佩良,王思广,王炜,王维平,王雄飞,王雅迪,王贻芳,王亚乾,王铮,王志刚,王志宏,王至勇,T.Weber,魏代会,韦江波,P.Weidenkaff,文硕频,U.Wiedner,M.Wolke,伍灵慧,吴智,夏磊,夏力钢,夏宇,肖栋,肖浩,肖振军,谢宇广,修青磊,许国发,徐雷,徐庆君,徐新平,严亮,鄢文标,闫文成,颜永红,杨海军,杨洪勋,杨柳,杨迎,杨永栩,叶梅,叶铭汉,殷俊昊,俞伯祥,喻纯旭,俞洁晟,苑长征,袁文龙,袁野,A.Yuncu,A.A.Zafar,A.Zallo,曾云,曾哲,张丙新,张炳云,张弛,张长春,张达华,张宏浩,章红宇,张佳佳,张杰磊,张敬庆,张家文,张建勇,张景芝,张坤,张磊,张学尧,张瑶,张宇宁,张银鸿,张亚腾,张宇,张正好,张子平,张振宇,赵光,赵京伟,赵静宜,赵京周,赵雷,赵玲,赵明刚,赵强,赵庆旺,赵书俊,赵天池,赵豫斌,赵政国,A.Zhemchugov,郑波,郑建平,郑文静,郑阳恒,钟彬,周莉,周详,周晓康,周小蓉,周兴玉,朱凯,朱科军,朱帅,朱世海,朱相雷,朱莹春,朱永生,朱自安,庄建,L.Zotti,邹冰松,邹佳恒.Measurements of the center-of-mass energies at BESⅢ via the di-muon process[J].Chinese Physics C,2016,40(6):1-8. 被引量:61
  • 3WANG Qing-Yan,LI Zhi,ZHANG Wen-Hao,ZHANG Zuo-Cheng,ZHANG Jin-Song,LI Wei,DING Hao,OU Yun-Bo,DENG Peng,CHANG Kai,WEN Jing,SONG Can-Li,HE Ke,JIA Jin-Feng,JI Shuai-Hua,WANG Ya-Yu,WANG Li-Li,CHEN Xi,MA Xu-Cun,XUE Qi-Kun.Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on SrTiO_(3)[J].Chinese Physics Letters,2012,29(3):204-207. 被引量:35

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部