摘要
光催化水裂解制氢为解决能源危机提供了一条可行的途径.然而,四电子的水氧化反应迟缓严重制约了水的分解效率.本文中,掺杂Mo的ZnIn_(2)S(4);(Mo-ZIS)光催化剂通过与动力学上有利的苯甲醇(BA)的氧化反应协同整合,显著促进了析氢反应,高价和不饱和Mo不仅促进光生载流子的分离,还促进BA的活化,从而加速BA的氧化.此外,Mo掺杂调节了ZIS的能带结构,增强了光催化剂的氧化能力,而不会引起BA的过度氧化.结果表明,Mo-ZIS光催化剂在不需要贵金属助催化剂的情况下,具有较高的析氢速率(16,353μmol g^(-1)h^(-1))和苯甲醛产率(13,942μmol g^(-1)h^(-1)),显著优于ZIS光催化剂.引人注意的是,通过调节BA与溶剂之间的氢键网络强度来调节中间体在Mo-ZIS表面的解吸过程,Mo-ZIS的BAD产率为23,068μmol g^(-1)h^(-1),相比于乙腈溶液中的反应速率提高了65%.本研究提出了一种有价值的将光催化制氢与选择性有机产物转化相结合的策略,为开发新型光催化剂,实现高效太阳能转化提供了新的见解.
Photocatalytic water splitting for hydrogen production provides a viable approach to address the energy crisis.However,the sluggish four-electron water oxidation severely restricts water splitting efficiency.Herein,with the Mo-doped ZnIn_(2)S(4)(Mo-ZIS)photocatalyst,the hydrogen production reaction is significantly facilitated through synergistic integration with the kinetically favourable oxidation of benzyl alcohol(BA).The high-valence and unsaturated Mo species promote not only the separation of photo carriers but also the activation of BA,thereby accelerating the oxidation of BA.Moreover,Mo doping adjusts the band structure of ZIS,enhancing the oxidation capability of the photocatalyst without inducing the excessive oxidation of BA.Consequently,Mo-ZIS efficiently produces both high-value-added H2 and benzaldehyde(BAD)products,exhibiting a remarkable hydrogen evolution rate(16,353μmol g^(-1)h^(-1))and BAD yield(13,942μmol g^(-1)h^(-1))without the need for additional noblemetal cocatalysts,significantly surpassing the performance of pristine ZIS photocatalysts.Strikingly,by modulating the desorption process of intermediates on the Mo-ZIS surface through adjusting the hydrogen bonding network strength between BA and the solvent,the BAD production rate of Mo-ZIS is 23,068μmol g^(-1)h^(-1),resulting in a 65%increase compared to acetonitrile solution.This work introduces a valuable strategy for combining photocatalytic hydrogen production with selective organic product transformation,providing new insights for the development of novel photocatalysts to achieve efficient solar energy conversion.
作者
俞杨帆
尤晓萌
张阳
彭玉
王雪璐
刘鹏飞
杨化桂
Yang Fan Yu;Xiao Meng You;Yang Zhang;Yu Peng;Xue Lu Wang;Peng Fei Liu;Hua Gui Yang(Key Laboratory for Ultrafine Materials of Ministry of Education,Shanghai Engineering Research Center of Hierarchical Nanomaterials,School of Materials Science and Engineering,East China University of Science and Technology,Shanghai 200237,China;Physics Department&Shanghai Key Laboratory of Magnetic Resonance,School of Physics and Electronic Science,East China Normal University,Shanghai 200062,China)
基金
financially supported by the National Key Research and Development Program of China(2023YFA1507102)
the National Natural Science Foundation of China(51920105003,22239001,22379043 and 22072045)
the Shanghai Pilot Program for Basic Research(22TQ1400100-12)
the Science and Technology Commission of Shanghai Municipality(21DZ1207101 and 23520710700)。