摘要
人工感知系统的大规模制备与图案化对实现仿生系统至关重要.传统工艺的图案化受限于掩膜版,难以大规模制备.喷墨打印技术的无掩膜图案化制备能力十分适配目前大规模制备的需求.然而,在器件的制造上,打印技术往往局限于制造简单的器件或在复杂器件中制备图案化的有源层.在此,我们实现全喷墨打印IGZO忆阻器阵列用于模拟伤害感受器.通过在全金属氧化物的ITO/IGZO/ITO忆阻器中加入一层Ag,实现了稳定的阈值切换特性,大的电流开关比(10~5),10~4次循环扫描的出色开关耐久性和良好的空间均匀性.我们分析了器件基于Ag导电丝的传导方式和LIF特性,如积累爆发、自泄露等,证明了忆阻器作为人工神经元的潜力.最后,我们利用该器件稳定的阈值切换特性,成功实现了人工伤害感受器,包括阈值、松弛、无适应和敏化.我们的工作证明了喷墨打印技术在实现仿生系统中拥有着巨大的应用潜力.
The large-scale fabrication and patterning of artificial perceptual systems are vital for the development of bionic systems.Traditional patterning processes are often constrained by the use of mask versions,which are not only expensive but also challenging to produce on a large scale.Inkjet printing technology with maskless patterning capability is well suited for current demands for large-scale preparation and patterning.However,the application of printing techniques is typically confined to the production of simple devices or the preparation of patterned active layers within more complex devices.In this study,we successfully fabricated fully inkjet-printed indium gallium zinc oxide(IGZO)memristor arrays to mimic artificial nociceptor(pain receptors).By integrating a layer of silver into the all metal-oxide indium tin oxide(ITO)/IGZO/ITO memristor,we achieved stable threshold switching characteristics,a large current switching ratio of 105,excellent switching durability of 104 cycles scans,and excellent spatial uniformity.We investigated the Ag-based conductive filament conduction mode and mimic LIF characteristics(leaky,integrate and fire),demonstrating the potential of the memristor as an artificial neuron.Lastly,we successfully implemented artificial nociceptor,including“threshold fire”,“relaxation”,“non-adaptation”,and“sensitization”,leveraging the stable threshold switching properties of the device.Our work demonstrates the significant potential of inkjet printing technology in the realization of bionic systems.
作者
彭文鸿
刘常飞
许晨辉
覃琮尧
秦宁浦
陈惠鹏
郭太良
胡文平
Wenhong Peng;Changfei Liu;Chenhui Xu;Congyao Qin;Ningpu Qin;Huipeng Chen;Tailiang Guo;Wenping Hu(Institute of Optoelectronic Display,National&Local United Engineering Lab of Flat Panel Display Technology,Fuzhou University,Fuzhou 350002,China;Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China,Fuzhou 350100,China;Joint School of National University of Singapore and Tianjin University,International Campus of Tianjin University,Binhai New City,Fuzhou 350207,China;Tianjin Key Laboratory of Molecular Optoelectronic Sciences,Department of Chemistry,School of Science,Tianjin University&Collaborative Innovation,Center of Chemical Science and Engineering(Tianjin),Tianjin 300072,China)
基金
supported by the National Key Research and Development Program of China(2022YFB3603802)
the National Natural Science Foundation of China(62374033)
Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ129)。