期刊文献+

基于多序列WOA-VMD算法的超宽带雷达心率检测

Heart Rate Detection Based on Multi-Sequence WOA-VMD Algorithm Using UWB Radar
下载PDF
导出
摘要 针对呼吸信号强干扰下心跳信号能量微弱难于准确提取的问题,提出了一种基于多序列WOA-VMD算法的超宽带雷达心率检测方法。首先,根据接收信号方差来确定目标范围,构建多序列生命体征向量,缩短观测时间。然后,融合鲸鱼算法(Whale Optimization Algorithm,WOA)和变分模态分解算法(Variational Mode Decomposition,VMD)来优化参数,准确分离出心跳信号。最后,利用超宽带雷达收集了8名志愿者在不同距离处的回波雷达信号,进行实验。与传统算法相比,所提算法能够抑制呼吸干扰,平均误差比最低仅为1.36%,测量精度较高。 To solve the problem that the heartbeat signal has low energy and is difficult to be extracted accurately under the strong interference of respiration signal,a heart rate monitoring method based on multi-sequence WOA-VMD algorithm is proposed.Firstly,the target range is determined based on the variance of the received signals.The multi-sequence vital signs vector is constructed to shorten the observation time.Subsequently,the WOA algorithm and the VMD algorithm are combined to optimize the parameters and extract heartbeat signal accurately.Eventually,the echo radar signals of 8 volunteers at different distances are collected by using ultra-wideband radar for experiments.As a result,the proposed method can suppress respiratory interference and achieve higher accuracy with the lowest average error ratio of 1.36%.
作者 弭晴 马永涛 黄祉同 MI Qing;MA Yongtao;HUANG Zhitong(School of Microelectronics,Tianjin University,Tianjin 300072,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2024年第7期1144-1153,共10页 Chinese Journal of Sensors and Actuators
基金 天津市自然科学基金项目(20JCYBJC00860)。
关键词 超宽带雷达 参数优化 变分模态分解 心率检测 UWB radar parameter optimization variational modal decomposition heart rate detection
  • 相关文献

参考文献3

二级参考文献20

  • 1BUGAEV A S,VASIL'EV I A,IVASHOV S I,et al.Radar methods of detection of human breathing and heartbeat[J].Journal of Communications Technology and Electronics,2006,51(10):1154-1168.
  • 2ANITORI L,DE J A,NENNIE F.FMCW radar for life-sign detection[C].Proc of IEEE Radar Conference,Pasadena,USA,2009:1-6.
  • 3STADERINI E M.UWB radar in medicine[J].IEEE AESS Systems Magazine,2002,17(1):13-18.
  • 4HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc Roy Soc London,1998,454(A):903-995.
  • 5VENKATESH S,ANDERSON C R,RIVERA N V,et al.Implementation and analysis of respiration rate estimation using impulse based UWB[C].IEEE Military Communications Conference,2005:3314-3320.
  • 6HUANG N E,SHEN Z,LONG S R.A new view of nonlinear water waves:the hilbert spectrum1[J].Annual Review of Fluid Mechanics,1999,31(1):417-457.
  • 7WU Z H,HUANG N E.Ensemble empirical mode decomposition:a noise assisted data analysis method[J].Advances in Adaptive Data Analysis,2008,11(1):40-41.
  • 8LI L,JI H B.Signal feature extraction based on an improved EMD method[J].Measurement,2009,42(5):796-803.
  • 9谢义方,方广有.基于无载频脉冲雷达信号等幅度追踪法检测生命信号[J].电子与信息学报,2009,31(5):1132-1135. 被引量:8
  • 10李斌,傅唯威,王勇.基于周期抽样的超宽带生命探测雷达信号处理方法[J].仪器仪表学报,2010,31(9):1979-1985. 被引量:17

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部