摘要
针对呼吸信号强干扰下心跳信号能量微弱难于准确提取的问题,提出了一种基于多序列WOA-VMD算法的超宽带雷达心率检测方法。首先,根据接收信号方差来确定目标范围,构建多序列生命体征向量,缩短观测时间。然后,融合鲸鱼算法(Whale Optimization Algorithm,WOA)和变分模态分解算法(Variational Mode Decomposition,VMD)来优化参数,准确分离出心跳信号。最后,利用超宽带雷达收集了8名志愿者在不同距离处的回波雷达信号,进行实验。与传统算法相比,所提算法能够抑制呼吸干扰,平均误差比最低仅为1.36%,测量精度较高。
To solve the problem that the heartbeat signal has low energy and is difficult to be extracted accurately under the strong interference of respiration signal,a heart rate monitoring method based on multi-sequence WOA-VMD algorithm is proposed.Firstly,the target range is determined based on the variance of the received signals.The multi-sequence vital signs vector is constructed to shorten the observation time.Subsequently,the WOA algorithm and the VMD algorithm are combined to optimize the parameters and extract heartbeat signal accurately.Eventually,the echo radar signals of 8 volunteers at different distances are collected by using ultra-wideband radar for experiments.As a result,the proposed method can suppress respiratory interference and achieve higher accuracy with the lowest average error ratio of 1.36%.
作者
弭晴
马永涛
黄祉同
MI Qing;MA Yongtao;HUANG Zhitong(School of Microelectronics,Tianjin University,Tianjin 300072,China)
出处
《传感技术学报》
CAS
CSCD
北大核心
2024年第7期1144-1153,共10页
Chinese Journal of Sensors and Actuators
基金
天津市自然科学基金项目(20JCYBJC00860)。
关键词
超宽带雷达
参数优化
变分模态分解
心率检测
UWB radar
parameter optimization
variational modal decomposition
heart rate detection