期刊文献+

知识图谱特征重构下无线传感网络数据存储恢复

Data Storage and Recovery in Wireless Sensor Networks Based on Knowledge Graph Feature Reconstruction
下载PDF
导出
摘要 为了提升无线传感网络数据存储恢复成功率,保障无线传感网络数据存储安全性,提出知识图谱特征重构下无线传感网络数据存储恢复方法。通过基于知识图谱的特征重构方法优化数据存储结构;利用BP神经网络和LEACH算法,对特征重构后的数据进行融合。最后,结合多级网络编码和纠删码的原理,构建多级编码矩阵对融合数据进行多级编码,并生成多份数据副本进行存储,实现无线传感网络数据存储恢复。实验结果表明,该方法能够提升数据存储恢复成功率至90%以上,通信代价低于1.5×10^(5) Mbit/s,存储恢复时间低于0.7 ms,可以在提升恢复成功率的同时,降低存储通信代价和存储恢复时间。 To improve the success rate of wireless sensor network data storage recovery and ensure the security of wireless sensor network data storage,a knowledge graph feature reconstruction method for wireless sensor network data storage recovery is proposed.Firstly,the feature reconstruction method based on knowledge graph reconstructs the data of wireless sensor networks and expands the data storage structure.Secondly,the BP neural network and LEACH algorithm are used to fuse the data after feature reconstruction to improve the reliability and stability of the data.Finally,based on the principles of multi-level network coding and erasure codes,a multilevel coding matrix is constructed to encode the fused data and generate multiple copies of the data for storage.When data are damaged,recovery of damaged data is achieved through data encoding and direct calculation of data blocks,ensuring the integrity and reliability of wireless sensor network data.The experimental results show that the proposed method can improve the success rate of data storage recovery to over 90%,and the communication cost is less than 1.5×10^(5) Mbit/s,with a storage recovery time of less than 0.7 ms,improving the recovery success rate while reducing storage communication costs and storage recovery time.
作者 何芳州 王祉淇 HE Fangzhou;WANG Zhiqi(School of Public Security Information Technology and Intelligence,Criminal Investigation Police University of China,Shenyang Liaoning 110854,China;Office of Academic Affairs,Criminal Investigation Police University of China,Shenyang Liaoning 110854,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2024年第7期1265-1270,共6页 Chinese Journal of Sensors and Actuators
基金 辽宁省社会科学规划基金项目(L21ASH004) 辽宁经济社会发展立项课题项目(2022lslybkt-039) 上海市刑事科学技术研究院现场物证重点实验室开放课题项目(2019XCWZK06,2020XCWZK02,2020XCWZK03) 智能警务四川省重点实验室项目(ZNJW2022KFMS002)。
关键词 无线传感网络 数据存储恢复 知识图谱 特征重构 纠删码 wireless sensor network data storage recovery knowledge graph feature reconstruction erasure code
  • 相关文献

参考文献13

二级参考文献96

  • 1张安珍,李建中,高宏.基于符号语义的不完整数据聚集查询处理算法[J].软件学报,2020,31(2):406-420. 被引量:8
  • 2Ratnasamy S, Karp B, Shenker S, et al. Data centric storage in sensornets with GHT, a geographic hash table [J]. Mobile Networks and Applications, 2003, 8(4) : 427-442.
  • 3Shenker S, Ratnasamy S, Karp B, et al. Data centric storage in sensornets[J]. ACM SIGCOMM Computer Communications Review, 2003, 33(1): 137-142.
  • 4Intanagonwiwat C, Govindan R, Estrin D, et al. Directed diffusion for wireless sensor networking [J]. IEEE/ ACM Transactions on Networking, 2003, 11(1): 2-16.
  • 5Gil T M, Madden S. Scoop: An adaptive indexingscheme for stored data in sensor netwo- rks[C]// Proceedings of IEEE 23rd International Conference on Data Engineering. New York: IEEE, 2007:1 320- 1 324.
  • 6Sarkar R, Zhu X, Gao J. Double rulings for information brokerage in sensor networks [C]// Proceedings of ACM MOBICOM. New York: Assoc Computing Machinery, 2006 : 286-297.
  • 7Dimakis A G, Prabhakaran V, Ramchandran K. Decentralized erasure codes for distributed networked storage [J]. IEEE Transactions on Information Theorv. 2006.52(6).2 809-2816.
  • 8Lin Yunfeng, Liang Ben, Li Baochun. Geometric random linear codes in sensor networks [C]// Proceedings of the 2008 IEEE International Conference on Communications. New York:IEEE, 2008:2 298- 2 303.
  • 9Azimi N H, Hou X, Gupta H, et al. Data preservation under spatial failure in sensor networks[C]// Proceedings of the Eleventh ACM International Symposium on Mobile Ad Hoc Networking & Computing. Chicago, 2010:171-180.
  • 10Lin Yunfeng, Liang Ben, Li Baochun. Data persistence in large-scale sensor networks with decentralized fountain codes [C]//Proceedings of the 26th IEEE Conference on Computer Communications. New York: IEEE, 2007:1 658-1 666.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部