期刊文献+

一类高阶有理差分方程的动力学定理

DYNAMICAL THEOREMS FOR A CLASS OF HIGHER ORDER RATIONAL DIFFERENCE EQUATIONS
下载PDF
导出
摘要 根据差分方程理论,证明了高阶有理差分方程χ_(n+1)=A+Bχ_(n)/3的5个动力学定理,即唯一的正平衡解x的局部渐近稳定性、全局渐近稳定性、有界性、持续性、周期解与半循环长度等不同结论。并用计算机Matlab程序描绘此差分方程解的图像,进一步验证了这5个定理。 According to the theory of difference equations,we prove five dynamic theorems for rational difference equationsχ_(n+1)=A+Bχ_(n)/3,including locally asymptotically stability,global asymptotically stability,boundedness,persistence,periodic solution,and semi-cycle length of the unique positive equilibrium solution.Then we used Matlab's numerical calculations to obtain the graph of the solution to the difference equation,which more intuitively verified the correctness of these 5 theorems.
作者 全卫贞 王丽 周敬人 黄日娣 刘付滢 吴语桐 胡可满 QUAN Weizhen;WANG Li;ZHOU Jingren;HUANG Ridi;LIU Fuying;WU Yutong;HU Keman(Department of Mathematic,Zhanjiang Preschool Education College,Zhanjiang,Guangdong 524037,China;College of Basic Education,Lingnan Normal University,Zhanjiang,Guangdong 524037,China)
出处 《井冈山大学学报(自然科学版)》 2024年第4期7-12,共6页 Journal of Jinggangshan University (Natural Science)
基金 国家自然科学基金项目(11761011) 广东大学生科技创新培育专项(pdjh2024b677) 校级重点项目(ZY24CGZD01)。
关键词 差分方程 平衡解 渐近稳定性 有界性 半循环长度 difference equation equilibrium point asymptotically stable boundedness semi-cycle length
  • 相关文献

参考文献5

二级参考文献23

  • 1宋兰芳,郭志明.一类差分方程边值问题正解的存在性[J].广州大学学报(自然科学版),2009,8(2):45-48. 被引量:5
  • 2杨甲山,刘琼.二阶非线性中立型时滞差分方程的正解存在性和振动性[J].湘潭大学自然科学学报,2005,27(4):16-20. 被引量:13
  • 3Saker S H.Oscillation of second order nonlinear delay difference equations[J].Bull.Korean.Math.Sot.,2003,40(3):489-501.
  • 4Zhang B G,Zhou Y J.Oscillation of difference equations with several delays[J].Computer and Mathematics with Applications.,2002,44(1):817-821.
  • 5Zhang Z G,Chen J F,Zhang C S.Oscillation of solutions for second order nonlinear difference equations with nonlinear neutral term[J].Computer and Mathematics with Applications.,2001,41(1):1487-1494.
  • 6Lalli B S,Zhang B G.On existence of positive solution and bound oscillations for neutral difference equations[J].J Math Anal Appl.,1992,166(1):272-287.
  • 7Saker S H. Oscillation of second order nonlinear delay difference equations[J].Bull.Korean. Math. Soc.,2003,40(3):489-501.
  • 8Zhang B G, Zhou Y J Oscillation of difference equations with several delays[J]. Computer and Mathematics with Applications, 2002,44(1):817-821.
  • 9Zhang Z G,Chen J F, Zhang C S. Oscillation of solutions for second order nonlinear difference equations with nonlinear neutral term[J]. Computer and Mathematics with Applications, 2001,41(1):1487-1494.
  • 10Lalli B S, Zhang B G On existence of positive solution and bound oscillations for neutral difference equations[J]. J Math Anal Appl, 1992, 166(1):272-287.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部