期刊文献+

驶向智能未来:深度学习在轨道交通革新中的应用

Driving Towards Intelligent Future:The Application of Deep Learning in Rail Transit Innovation
下载PDF
导出
摘要 目前,轨道交通凭借其便利性、高效性等特点,在城市交通中扮演着重要角色。然而,现有轨道交通系统的运行过程也存在着复杂的问题,客流预测、列车调度等环节仍采用人工方式,效率和准确率均较低,对系统性能造成了一定影响。近年来,深度学习蓬勃发展,其强大的特征提取与图像识别能力,也为轨道交通的自动化、智能化发展提供了更多的可能性。文中首先阐述了当前轨道交通在现实生活各种应用场景中面临的挑战;其次从轨道交通感知任务、预测任务、优化任务等方面分析了深度学习赋能轨道交通领域的主要应用;最后,从高精度和高鲁棒性的安全性检测,轻量级的轨道交通模型,全自动的轨道交通智能化运行,以及借助云计算、大数据的信息处理高效化4个方面展望了未来深度学习在轨道交通中的发展方向。 Nowadays,rail transit plays a crucial role in urban transportation due to its convenience and efficiency.However,the operation of existing rail transit systems faces complex challenges.Processes such as passenger flow prediction and train scheduling still rely on manual methods,leading to low efficiency and accuracy,which has a certain impact on the system’s performance.In recent years,with the flourishing development of deep learning,its powerful feature extraction and image recognition capabilities provide more possibilities for the automation and intelligence of rail transit.This paper first outlines the challenges faced by current rail transit in various real-life scenarios,and then analyzes the main applications of deep learning in the rail transit field,including perception tasks,prediction tasks,optimization tasks,etc.Finally,the future development direction of deep learning in rail transit is prospected from four aspects:high-precision and robust safety detection,lightweight rail transit models,fully automated intelligent operation of rail transit,and efficient information processing through cloud computing and big data.
作者 孙宇墨 李昕航 赵文杰 朱力 梁雅楠 SUN Yumo;LI Xinhang;ZHAO Wenjie;ZHU Li;LIANG Ya’nan(School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China)
出处 《计算机科学》 CSCD 北大核心 2024年第8期1-10,共10页 Computer Science
关键词 深度学习 轨道交通 感知 预测 优化 Deep learning Rail transit Perception Prediction Optimization
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部