摘要
为准确提取出能够表征车辆主减速器故障的故障特征,同时针对多尺度微分符号熵(Multi-scale Differential Symbolic Entropy,MDSE)粗粒化过程中存在的问题,提出增强多尺度微分符号熵(Enhanced Multi-scale Differential Symbolic Entropy,EMDSE)的概念,并结合蝴蝶算法(Butterfly Optimization Algorithm,BOA)优化的支持向量机(Support Vector Machine,SVM),提出主减速器故障诊断的EMDSE和BOA-SVM方法。EMDSE可解决MDSE粗粒化过程中存在的信息泄露和计算结果不稳定的不足,能够更加有效地利用信号中存在的故障信息。主减速器故障诊断实例结果表明,相比于MDSE,EMDSE的计算结果更稳定,对主减速器不同故障状态的可区分性更强,BOA-SVM得到的诊断精度更高。
In order to accurately extract the fault features that can represent the fault of the vehicle′s main reducer,and to solve the problems existing in coarse granulating process of the multi-scale differential symbolic entropy(MDSE),the concept of enhanced multi-scale differential symbolic entropy(EMDSE)was proposed.Combined with the support vector machine(SVM)optimized by butterfly optimization algorithm(BOA),a main reducer fault diagnosis method based on EMDSE and BOA-SVM was presented.The EMDSE solves the problems of information leakage and unstable calculation results in the process of MDSE coarse granulating,and can make more effective use of the fault information in the signal.The example results of main reducer fault diagnosis show that,compared with MDSE,the calculation results of EMDSE are more stable and can distinguish different fault states of the main reducer more precisely,and the diagnostic accuracy obtained by BOA-SVM is higher.
作者
汪会财
徐婷婷
胡晓锐
龙羿
池磊
唐述
WANG Huicai;XU Tingting;HU Xiaorui;LONG Yi;CHI Lei;TANG Shu(State Grid Chongqing Electric Power Company,Chongqing 400015,China;College of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处
《噪声与振动控制》
CSCD
北大核心
2024年第4期161-166,共6页
Noise and Vibration Control
基金
国家自然科学基金资助项目(61601070)
重庆市技术创新与应用发展专项面上资助项目(cstc2020jscx-msxmX0135)。
关键词
故障诊断
主减速器
微分符号熵
多尺度
增强
fault diagnosis
main reducer
differential symbolic entropy
multi-scale
enhance