摘要
氢燃料电池汽车在行驶过程中受路况影响产生振动,引起的振动载荷可能导致车载气瓶产生表面损伤,直接影响气瓶的使用安全和效率。针对储氢气瓶路况载荷数据分布不平衡导致载荷识别效果不佳的问题,提出一种改进深度卷积生成模型(Deep Convolutional Generative Adversarial Networks,DCGAN)结合卷积神经网络(Convolutional Neural Network,CNN)的路况振动载荷识别方法。DCGAN可以实现样本扩充,提高模型的识别性能。同时,针对DCGAN的卷积计算只能处理相邻数据特征的问题,将自注意力机制(Self Attention,SA)引入DCGAN中,自注意力机制可以计算样本的特征点之间的关系,帮助DGCAN的生成器充分学习样本的全局特征,增强模型泛化性。最后通过CNN实现载荷识别。通过实验对提出模型进行测试,并与多种模型比较;实验结果表明,提出的模型对路况振动载荷识别准确率达到96.3%,与其他模型相比,该模型表现出更好的性能。
Vibration of hydrogen fuel cell vehicles is greatly influenced by road conditions during driving,and the resulting vibration load may cause surface damage of the on-board gas cylinders,which directly affects their safety and efficiency.To solve the issue of poor load identification due to the unbalanced distribution of road load data for hydrogen storage gas cylinders,an improved deep convolutional generative adversarial networks(DCGAN)model combined with convolutional neural networks(CNN)is proposed for road condition vibration load identification.The DCGAN can realize sample expansion and improve the recognition performance of the model.Meanwhile,aiming at the problem that the convolutional calculation of DCGAN can only deal with the characteristics of adjacent data,the self-attention mechanism(SA)is introduced into the DCGAN to calculate the relationship between feature points of the sample and help the generator of DGCAN to fully learn the global features of the sample and enhance the generalization of the model.Finally,load recognition is realized through CNN.The proposed model is experimentally tested and the results are compared with those of various models.It is found that the accuracy rate of the proposed model for road condition vibration load recognition can reach 96.3%,and the proposed model exhibits better performance than the other models.
作者
李淳
胡越
鞠宽
焦玲
高阳
LI Chun;HU Yue;JU Kuan;JIAO Ling;GAO Yang(Shanghai Key Laboratory of Intelligent Sensing and Detection Technology,East China University of Science and Technology,Shanghai 200237,China;School of Mechanical and Power Engineering,East China University of Science and Technology,Shanghai 200237,China;SZET(Jingjiang)Equipment Manufacturing Co.,Ltd.,Jingjiang 214500,Jiangsu,China;Wuhan National Laboratory for Optoelectronics,Huazhong University of Science and Technology,Wuhan 430074,China)
出处
《噪声与振动控制》
CSCD
北大核心
2024年第4期205-210,277,共7页
Noise and Vibration Control
基金
国家自然科学基金资助项目(51705154,51835003,61804054)
国家自然科学青年基金资助项目(52105113)
武汉光电国家实验室开放资助项目(2020WNLOKF007)
中央高校基本科研业务费专项资金资助项目。
关键词
振动与波
路况识别
数据增强
生成对抗网络
自注意力机制
模式识别
vibration and wave
road condition recognition
data enhancement
generative adversarial network
selfattention
pattern recognition