摘要
本文设计了锂离子电池负极材料FeSe/C纳米纤维的制备及性能物理化学综合实验。锂离子电池FeSe负极材料具有理论比容量高、资源丰富、环境友好的优点,然而其导电性差、循环过程中体积膨胀大,从而限制了其发展与实际应用。本实验采用静电纺丝结合煅烧制备了FeSe/C纳米复合纤维,采用X射线衍射(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)、扫描电镜(SEM)和透射电镜(TEM)对材料的结构与形貌进行了表征,采用恒流充放电测试和循环伏安(CV)对材料的储锂/钾性能进行了研究。结果表明,FeSe/C纳米复合纤维具有单一的晶型和独特的一维纳米纤维结构,FeSe纳米颗粒均匀地分布在直径约为200 nm的碳纳米纤维中。650℃下煅烧得到的FeSe/C纳米复合纤维表现出出色的电化学性能。在锂离子半电池中,FeSe/C在1000 mA/g下循环300次后比容量为661 mAh/g,在5000 mA/g下仍表现出335 mAh/g的容量。
This paper designs a comprehensive physical chemistry experiment on the preparation and performance of FeSe/C nanofibers as anode electrode materials for lithium-ion batteries.FeSe as anode materials has the advantages of high theoretical specific capacity,abundant resources and environmental friendliness.However,its poor conductivity and large volume changes during charge-discharge processes limit its development and practical application.In this paper,FeSe/C nanofibers have been prepared by electrospinning followed by annealing.The structure and morphology of the materials are characterized by X-ray diffraction(XRD),Raman spectroscopy(Raman),X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM)and transmission electron microscopy(TEM).The lithium/potassium storage properties of the materials are studied by constant current charge discharge test,and cyclic voltammetry(CV).The results show that FeSe/C nanofibers have a single crystal phase and a unique one-dimensional nanofiber structure,and the FeSe nanoparticles are uniformly distributed in the carbon nanofibers with a diameter of about 200nm.The FeSe/C nanofibers annealed at 650℃show excellent electrochemical properties.In the lithium-ion half cell,the specific capacity of FeSe/C nanofibers electrode is 661 mAh/g after 300 cycles at 1000 mA/g,and it still shows a capacity of 335 mAh/g at 5000 mA/g.
作者
刘黎
张文
Liu Li;Zhang Wen(Xiangtan University,Xiangtan 411105,China)
出处
《广东化工》
CAS
2024年第9期161-164,共4页
Guangdong Chemical Industry
基金
湖南省普通高等学校教学改革研究项目“创新型物理化学实验教学模式的构建与实践”(HNJG-2022-0571)。
关键词
物理化学实验
锂离子电池
负极
FeSe/C
physical chemistry experiment
lithium ion batteries
anode materials
FeSe