摘要
构建相应的表现性评价量规对了解深度学习是否发生,发生的程度如何以及促进教师的教和学生的学至关重要。文章针对教师对评价量规“不愿用”“不会用”“不乐用”的现象,立足深度学习的评价理论,结合调查与专家咨询,形成包括“认知”“能力”“情感”的三个一级指标、9个二级指标的表现性评价目标体系,以模块化设计的视角,探索了表现性评价量规的模块化设计与实施,以期让表现性评价真正成为深度学习发生的“指南针”。
Constructing corresponding performance evaluation gauges is crucial for understanding whether deep learning occurs,to what extent it occurs,and to promote teachers’teaching and students’learning.This article focuses on the phenomenon of teachers’not willing to use’‘not able to use’and‘not happy to use’.Based on the evaluation theory of deep learning,combined with investigation and expert consultation that includes 3 primary indicators of“cognition”,“ability”,and“emotion”and nine secondary indicators,we explored the modular design and implementation of performance evaluation gauges from the perspective of modular design.To make performance-based evaluation truly a“compass”for deep learning,and to make evaluation gauges a teaching lever that is“usable”,“userfriendly”,and“enjoyable for teachers”.
作者
范楠楠
FAN Nannan(Shanghai Jinshan Institute of Education,Shanghai 201508,China)
出处
《教育参考》
2024年第7期7-15,共9页
Education Approach
基金
2021年度上海市教育科学研究项目“指向初中学生深度学习的表现性评价研究”(项目编号:C2021327)的阶段性研究成果。
关键词
深度学习
表现性评价
评价量规
模块化设计
Deep Learning
Evaluation Gauge
Evaluation Metries
Modular Design