摘要
为了平衡主动配电网中可再生能源与负荷间的出力差值,降低预算成本和用户购电费用,研究提出基于电力需求侧响应的主动配电网分布式发电单元优化调度方法。以电力需求侧响应为前提,设定分布式发电单元优化调度优先级,结合以主动配电网发电成本费用总值最低为目标而建立的目标函数,设置主动配电网调度周期内所有时间段的节点电压、潮流方程、储能系统荷电状态以及柔性负荷的功率极限约束条件,并以此为基础构建主动配电网分布式发电单元优化调度模型。最后,再利用改进后的粒子群算法对模型进行求解,从而得到最终的优化调度结果。实验结果表明,所提方法可以有效平衡可再生能源与负荷之间的发电出力差值,既提升了主动配电网对可再生能源的消纳能力,也降低了发电预算开支和用户购电成本。
In order to balance the output difference between renewable energy and load in the active distribution network and reduce the budget cost and user purchase cost,an optimal dispatching method of distributed generation units in the active distribution network based on power demand side response was proposed.On the premise of power demand side response,set the optimal dispatching priority of distributed generation units,combined with the objective function established with the total generation cost of active distribution network as the minimum objective,set the node voltage,power flow process,state of charge of energy storage system and power limit constraints of flexible load in all time periods of the active distribution network dispatching cycle,on this basis,the optimal dispatching model of active distribution network distributed generation units was constructed.Finally,the improved particle swarm optimization algorithm was used to solve the model and obtain the final optimized scheduling result.The experimental results show that the proposed method can effectively balance the difference in power generation output between renewable energy and load,which not only improves the absorption capacity of active distribution networks for renewable energy,but also reduces power generation budget expenses and user purchase costs.
作者
姜雪娇
张昌庆
覃刚
钟磊
周朝俊
陈育培
JIANG Xuejiao;ZHANG Changqing;QIN Gang;ZHONG Lei;ZHOU Chaojun;CHEN Yupei(Hainan Power Grid Corporation Ltd.,Haikou 570100,Hainan,China)
出处
《电气传动》
2024年第8期77-82,共6页
Electric Drive
基金
中国南方电网有限责任公司科技项目(073000KK52180005)。
关键词
电力需求侧
主动配电网
分布式发电单元
改进粒子群算法
优化调度
源荷共赢
power demand side
active distribution network
distributed generation unit
improved particle swarm optimization algorithm
optimize scheduling
source dutch win-win situation