摘要
针对当前直流输电系统中控制保护校核存在精度与自动化水平均较低的问题,设计了一种基于改进多目标量子粒子群算法的智能校核技术方案。该方案在选取相关指标参数并根据其特性建立耦合波动参数解析模型的基础上,将模型的求解转化为多目标优化问题。采用经差分进化算子改进的多目标QPSO算法实现了问题的求解进而完成校核。对直流输电控制系统中保护参数样本集进行测试,结果表明,所提算法能够实现对直流输电系统控制保护参数的准确、高效校核,且协方差最低值小于0.07,具有良好的自动化水平,有助于系统的安全、稳定运行。
In response to the low accuracy and automation level of control and protection verification in current DC transmission systems,an intelligent calibration technology scheme based on improved multi⁃objective Quantum Particle Swarm Optimization algorithm is proposed.On the basis of selecting relevant indicator parameters and establishing a coupled fluctuation parameter analysis model based on their characteristics,this scheme transforms the solution of the model into a multi⁃objective optimization problem.The multi⁃objective QPSO algorithm improved by differential evolution operator was used to solve the problem and complete the verification.The results of testing the sample set of protection parameters in the DC transmission control system show that the proposed algorithm can achieve accurate and efficient verification of control and protection parameters in the DC transmission system,and the minimum covariance value is less than 0.07.It has a good level of automation and contributes to the safe and stable operation of the system.
作者
孟子杰
董锴
郝文焕
林旭
李路遥
MENG Zijie;DONG Kai;HAO Wenhuan;LIN Xu;LI Luyao(Power Dispatching Control Center,Guangdong Power Grid Co.,Ltd.,Guangzhou 510600,China;Tsinghua Sichuan Energy Internet Research Institute,Chengdu 610200,China)
出处
《电子设计工程》
2024年第17期107-111,共5页
Electronic Design Engineering
基金
广东电网公司管理创新项目(GDKJXM20210834)。
关键词
直流输电系统
智能校核
量子粒子群算法
多目标优化
耦合波动参数解析模型
DC transmission system
intelligent calibration
Quantum Particle Swarm Optimization algor⁃ithm
multi⁃objective optimization
coupled fluctuation parameter analysis model