摘要
网络安全态势会直接影响互联网的发展,为网络系统安全、稳定地运行奠定基础。文中通过转化RBF神经网络权值,并形成粒子群中粒子,让粒子在解空间内部寻找全局最优权值,同时需将最优解问题的解的空间维度优化成五维,若将5个优化问题的最优化解与PSO算法相对应,对RBF神经网络的权重进行编码。结果显示,与RBF神经网络相比,粒子群优化RBF神经网络预测误差的起伏更小。如果训练频率较低,该算法能实现较快的预测,且预测结果接近于互联网安全态势的真实值,实现更快、更有效的预测。
The cyber security situation will directly affect the development of the Internet and lay the foundation for the safe and stable operation of the network system.In this paper,the weights of RBF neural networks are transformed to form particles in the particle swarm.The particles find the global optimal weights in the solution space.At the same time,the spatial dimension of the solution of the optimal solution problem needs to be optimized into five dimensions.If the optimal solution of the five optimization problems corresponds to the PSO algorithm,the weights of RBF neural networks can be encoded.The results show that compared with RBF neural networks,the prediction error of particle swarm optimization RBF neural networks fluctuates less.If the training frequency is low,the algorithm can achieve faster predictions,and the prediction results are close to the true value of the Internet security situation,achieving faster and more effective predictions.
作者
张成川
赵兵
徐鑫
ZHANG Chengchuan;ZHAO Bing;XU Xin(Admission Office,Chongqing College of Mobile Communication,Chongqing 401520,China;Chongqing Key Laboratory of Public Big Data Security Technology,Chongqing 401520,China;Training Center,Chongqing College of Mobile Communication,Chongqing 401520,China)
出处
《移动信息》
2024年第7期203-205,共3页
MOBILE INFORMATION
基金
重庆市重庆移通学院教改项目(23JG331)。
关键词
人工智能
粒子群优化
RBF神经网络
网络数据
优化算法
Artificial intelligence
Particle swarm optimization
RBF neural network
Network data
Optimization algorithm