期刊文献+

基于两阶段法的车+无人机配送模式路径研究

Research on the Path of Vehicle+UAV Delivery Model Based on a Two-stage Approach
下载PDF
导出
摘要 随着电商的不断发展及线上订单的激增,给物流行业带来了巨大的压力。综合考虑无人机载重和续航里程等因素,以卡车和无人机配送总成本最小化为目标,建立车协同无人机配送的数学模型。并设计了两阶段方法求解数学模型,首先利用K-means聚类算法求出卡车配送点,再用离散人工萤火虫算法求解无人机最短配送路径,最终依据模型得出配送总成本。算例仿真表明,离散人工萤火虫算法比传统蚁群算法、粒子群算法具有更好的寻优能力,车协同无人机配送模式比传统的单独车辆配送模式成本更低,减少了53%,为解决物流行业配送压力问题提供一种有效的解决方案。 With the continuous development of e-commerce and the surge of online orders,it has brought tremendous pressure to the logistics industry.Considering factors such as UAV load and range,the mathematical model of vehicle-coordinated UAV delivery is established with the goal of minimizing the total cost of truck and UAV delivery.The two-stage method is designed to solve the mathematical model,firstly,the truck delivery point is found by K-means clustering algorithm,then the shortest delivery path of UAV is solved by discrete artificial firefly algorithm,and finally the total cost of delivery is derived based on the model.The simulation shows that the discrete artificial firefly algorithm has a better optimization capability than the traditional ant colony algorithm and particle swarm algorithm,and the vehicle cooperative UAV delivery mode has a lower cost of 53%than the traditional separate vehicle delivery mode,which provides an effective solution to solve the distribution pressure problem in the logistics industry.
作者 刘欣欣 栗振锋 李兴莉 许家欢 LIU Xin-xin;LI Zhen-feng;LI Xing-li;XV Jia-huan(School of Transportation and Logistics,Taiyuan University of Science and Technology,Taiyuan 030024,China;School of Applied Science,Taiyuan University of Science and Technology,Taiyuan 030024,China;College of Civil Engineering and Architecture,Hebei University,Hebei Baoding 071002,China)
出处 《太原科技大学学报》 2024年第4期409-414,420,共7页 Journal of Taiyuan University of Science and Technology
基金 山西省自然科学基金面上项目(201901D111255)。
关键词 无人机 路径优化 K-MEANS聚类算法 离散人工萤火虫算法 UAV path optimization K-means clustering algorithm discrete artificial firefly algorithm
  • 相关文献

参考文献9

二级参考文献67

  • 1蔡之华,彭锦国,高伟,魏巍,康立山.一种改进的求解TSP问题的演化算法[J].计算机学报,2005,28(5):823-828. 被引量:60
  • 2Yong-Hyun Cho.An efficient solving the travelling salesman problem:Global optimization of neural networks by using hybrid method .Traveling Salesman Problem,Theory and Applications .Switzerland:Intech Press,2010.155-176.
  • 3Hirotaka Itoh.The method of solving for travelling salesman problem using genetic algorithm with immune adjustment mechanism .Traveling Salesman Problem,Theory and Applications .Switzerland:Intech Press,2010.97-112.
  • 4Kaji T.Approach by ant tabu agents for ttraveling salesman problem .Proceedings of the IEEE International Conference on Systems,Man,and Cybernetics .Tucson,AZ,USA:IEEE Press,2001.3429-3434.
  • 5X H Shi,Y C Liang,H P Lee,C Lu,Q X Wang.Particle swarm optimization-based algorithms for TSP and generalized TSP[J].Information Processing Letters,2007,103(5):169-176.
  • 6K N Krishnand,D Ghose.Detection of multiple source locations using a glowworm metaphor with applications to collective robotics .Proceedings of IEEE Swarm Intelligence Symposium.Pisatway .Pasadena California:IEEE Press,2005.84-91.
  • 7K N Krishnand,D Ghose.Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications[J].Multiagent and Grid Systems,2006,2(3):209-222.
  • 8K N Krishnanad,D Ghose.Theoretical foundations for rendezvous of glowworm-inspired agent swarms at multiple locations[J].Robotics and Autonomous Systems,2008,56(7):549-569.
  • 9K N Krishnand,D Ghose.Glowworm swarm optimisation:a new method for optimizing multi-modal functions[J].Int J Computational Intelligence Studies,2009,1(1):93-119.
  • 10K N Krishnand,D Ghose.Glowworm swarm optimisation for simultaneous capture of multiple local optima of multimodal functions[J].Swarm Intelligence,2009(3):87-124.

共引文献484

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部