期刊文献+

基于医疗知识驱动的中文疾病文本分类模型

Chinese disease text classification model driven by medical knowledge
原文传递
导出
摘要 本文提出一种基于医疗知识驱动的中文疾病文本分类模型。首先,通过引入外部医疗知识图谱中的结构化知识,得到知识增强的疾病文本向量表示;其次,使用双向长短期记忆网络和卷积神经网络分别提取疾病文本的全局语义特征和局部语义特征,同时,联合注意力机制提高模型对有效特征信息提取的效率;最后,将提取到的特征进行拼接融合,并利用分类器输出分类结果。在中文疾病文本数据集上的实验结果表明,所提模型分类的精确率、召回率和精确率和召回率的调和均值F1值分别可达95.21%、95.64%和95.42%,与其他模型相比具有更优的分类效果。 This study proposes a Chinese disease text classification model that integrates knowledge graph.Firstly,by introducing structured knowledge from external medical knowledge graph,a knowledge enhanced disease text vector representation is obtained;Secondly,the global semantic features and local semantic features of the disease text are extracted by using bidirectional long shortterm memory network and convolutional neural network respectively.At the same time,the joint attention mechanism improves the efficiency of the model in extracting effective features information;Finally,the extracted features are concatenated and fused,and a classifier is used to output the classification result.The experimental results on the Chinese disease text dataset show that the proposed model has a classification accuracy,recall,and the harmonic mean value F1 of 95.21%,95.64%,and 95.42%,respectively,which shows better classification performance compared to other models.
作者 黎超 廖薇 LI Chao;LIAO Wei(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2024年第7期122-130,共9页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(62001282)。
关键词 疾病文本分类 知识图谱 卷积神经网络 双向长短期记忆网络 注意力机制 disease text classification knowledge graph CNN BiLSTM attention mechanism
  • 相关文献

参考文献6

二级参考文献40

共引文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部