摘要
针对单一模型在预测无人水面艇(Unmanned Surface Vessel,USV)运动姿态时精度不高的问题,提出一种基于卷积神经网络(CNN)和门控循环单元(GRU)的USV姿态多步预测模型。首先,使用滑动窗口法构造运动姿态数据集作为模型输入;然后,使用CNN模块挖掘时序数据的局部特征;最后,使用GRU模型进行多步预测。使用实测USV运动姿态数据进行预测实验,实验结果表明,该模型比XGBoost模型、单一LSTM模型和单一GRU模型具有更高的预测精度,各项评价指标表现更佳,具有重要的应用价值。
Aiming at the problem of low accuracy of single model in predicting the ship motion of Unmanned Surface Vehicle(USV),a multi-step prediction model based on Convolutional Neural Network(CNN)and Gate Recurrent Unit(GRU)is proposed.Firstly,the sliding window method is used to construct the motion data set as the model input.Then,the CNN module is used to mine the local features of time series data.Finally,the GRU network is used for multi-step prediction.The experimental results show that the model has higher prediction accuracy than XGBoost model,single LSTM model and single GRU model,and its performance of each evaluation index is better,which has important application value.
作者
宋大雷
黄希妍
李康
傅敏龙
罗晔
陈溟
SONG Dalei;HUANG Xiyan;LI Kang;FU Minlong;LUO Ye;CHEN Ming(College of Engineering,Ocean University of China,Qingdao 266100,China;System Engineering Research Institute,China State Shipbuilding Corporation Limited,Beijing 100094,China;Qingdao Gosci Technology Group,Qingdao 266237,China)
出处
《舰船科学技术》
北大核心
2024年第13期132-136,共5页
Ship Science and Technology
基金
青岛市关键技术攻关及产业化示范类资助项目(23-1-3-hygg-11-hy)
三亚崖州湾科技城科研项目(SKJC 202201001)。
关键词
无人水面艇
运动姿态
多步预测
CNN
GRU
unmanned surface vehicle
motion attitude
multi-step prediction
CNN
GRU