期刊文献+

基于实数化的均匀圆阵矩阵重构方法

A matrix reconstruction method based on real numbers and uniform circular array
下载PDF
导出
摘要 为了减小低快拍数和低信噪比下采样协方差矩阵误差,并降低其运算复杂度,提出了一种基于实数化的均匀圆阵采样协方差矩阵重构方法。针对均匀圆阵的特点,通过组建特殊的基向量,构成特殊的重构矩阵。通过将采样协方差矩阵实数化,进一步降低了重构矩阵的复杂度。考虑到多通道不一致性对重构矩阵的影响,引入0位校正算法,提高了重构方法的稳健性。最后应用重构后的协方差矩阵进行子空间类波达方向估计(direction of arrival,DOA)。实验仿真证明,该特殊重构矩阵在实数化下与原矩阵重构能力相同;当快拍数为100、信噪比为0 dB时,双信源分辨力较重构前由74%提高到95%以上;理论重构运算复杂度降低到原来的53.99%。 In order to reduce the covariance matrix error and computational complexity of downsampling with low number of snapshots and low signal-to-noise ratio,a real number based uniform circular array sampling covariance matrix reconstruction method is proposed.Based on the characteristics of uniform circular arrays,a special reconstruction matrix is constructed by constructing special basis vectors.By quantifying the sampling covariance matrix,the complexity of the reconstruction matrix is further reduced.Considering the impact of multi-channel inconsistency on the reconstruction matrix,a zero bit correction algorithm is introduced to improve the robustness of the reconstruction method.Finally,the reconstructed covariance matrix is applied to the subspace class direction of arrival(DOA)estimation.Experimental simulation shows that this special reconstruction matrix has the same reconstruction ability as the original matrix in real number.When the number of snapshots was 100 and the signal-to-noise ratio was 0dB,the resolution of dual sources was improved from 74%to over 95%compared with that before reconstruction;The complexity of theoretical reconstruction operation was reduced to 53.99%of the original one.
作者 张涛 刘鲁涛 ZHANG Tao;LIU Lutao(School of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China)
出处 《应用科技》 CAS 2024年第4期122-128,共7页 Applied Science and Technology
基金 国家自然科学基金项目(62001136).
关键词 矩阵重构 实数化 波达方向估计 子空间恢复 0位校正 阵列信号处理 高分辨 基向量 matrix reconstruction real number conversion direction of arrival estimation subspace recovery 0 bit correction array signal processing high resolution base vector
  • 相关文献

参考文献8

二级参考文献48

  • 1冯德军,王雪松,陈志杰,杨建华,王国玉.酉ESPRIT超分辨ISAR成像方法[J].电子学报,2005,33(12):2097-2100. 被引量:8
  • 2李海森,周天,朱志德,孙圣和.前后向空间平滑对相关信号源的DOA估计性能[J].哈尔滨工业大学学报,2007,39(3):416-419. 被引量:8
  • 3[1]Chan T F. Rank Revealing QR Factorization[J]. Linear Algebra and Its Applications, 1987,89:67 - 82.
  • 4[2]Stewart G W. An Updating Algorithm for Subspace Tracking[J]. IEEE Trans. on Signal Processing, 1992, 40:1535 - 1541.
  • 5[3]Gotze J, Van der Veen A J. On-Line Subspace Estimation Using a Schur-Type Method[J]. IEEE Trans. on Signal Processing, 1996, 44(6): 1585 - 1589.
  • 6[4]Davila C E, Azmoodeh M. Efficiont Estimation of the Signal Subspace without Eigendecomposition [ J ]. IEEE Trans. on Signal Processing,1994, 42(1): 236-239.
  • 7[5]Karhunen J T, Joutsensalo J. Sinusoidal Frequency Estimation by Signal Subspace Approximation[J]. IEEE Trans. on Signal Processing, 1992,40(12): 2961-2972.
  • 8[6]Hasan M A. Rational Invariant Subspace Approximations with Applications[J]. IEFE Trans. on ASSP, 2000, 48(11): 3032-3041.
  • 9[7]Haardt M, Nossek J A. Unitary ESPRIT: How to Obtain Increased Estimation Accuracy with a Reduced Computational Burden [ J ]. IEEE Trans. on Signal Processing, 1995, 43(5): 1232 - 1242.
  • 10[8]Gershman A B, Haardt M. Unitary Root-MUSIC with a Real-Valued Eigendecomposition: A Theoretical and Experimental Pefformance Study[J]. IEEE Trans. on Signal Processing, 2000, 48(5): 3049-3052.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部