摘要
核电站阀门远传机构长期运行在恶劣工况下,当出现故障时会使核电站中关键阀门无法正常开闭,严重时导致设备停机检修,从而造成经济损失。针对这一问题,本文提出一种小波包能量熵-BP神经网络的阀门远传机构故障诊断方法。阀门远传机构样机搭建LabWindows/CVI振动信号采集试验平台,使用小波包算法对故障信号进行分解与重构,并提取小波包能量熵来构造故障特征向量,输入到BP神经网络训练后,经MATLAB仿真运行,验证了该方法的可行性和有效性。
The valve remote transmission mechanism of nuclear power plant operates under harsh conditions for a long time.When a fault occurs,the key valves in the nuclear power plant cannot be opened and closed normally,which will lead to economic losses caused by equipment shutdown and maintenance.Aiming at this problem,this paper proposes a fault diagnosis method of valve remote transmission mechanism based on wavelet packet energy entropy-BP neural network.Based on the prototype of valve remote transmission mechanism,a LabWindows/CVI vibration signal acquisition test platform is built.The wavelet packet algorithm is used to decompose and reconstruct the fault signal,and the wavelet packet energy entropy is extracted to construct the fault feature vector.After input into the BP neural network training,the feasibility and effectiveness of the method are verified by MATLAB simulation.
作者
邓家利
刘劲涛
王永超
DENG Jiali;LIU Jintao;WANG Yongchao(School of Energy and Power,Shenyang Institute of Engineering,Shenyang 110136,Liaoning Province;College of Machinery,Shenyang Institute of Engineering,Shenyang 110136,Liaoning Province)
出处
《沈阳工程学院学报(自然科学版)》
2024年第3期45-56,72,共13页
Journal of Shenyang Institute of Engineering:Natural Science
基金
国家自然科学基金青年基金(62001312)
辽宁省教育厅一般项目(LYB201702)。
关键词
阀门远传机构
小波包能量熵
BP神经网络
MATLAB
故障诊断
Valve remote transmission mechanism
Wavelet packet energy entropy
BP neural network
MATLAB
Fault diagnosis