期刊文献+

Massive Dirac particles based on gapped graphene with Rosen-Morse potential in a uniform magnetic field

下载PDF
导出
摘要 We explore the gapped graphene structure in the two-dimensional plane in the presence of the Rosen-Morse potential and an external uniform magnetic field.In order to describe the corresponding structure,we consider the propagation of electrons in graphene as relativistic fermion quasi-particles,and analyze it by the wave functions of two-component spinors with pseudo-spin symmetry using the Dirac equation.Next,to solve and analyze the Dirac equation,we obtain the eigenvalues and eigenvectors using the Legendre differential equation.After that,we obtain the bounded states of energy depending on the coefficients of Rosen-Morse and magnetic potentials in terms of quantum numbers of principal n and spin-orbit k.Then,the values of the energy spectrum for the ground state and the first excited state are calculated,and the wave functions and the corresponding probabilities are plotted in terms of coordinates r.In what follows,we explore the band structure of gapped graphene by the modified dispersion relation and write it in terms of the two-dimensional wave vectors K_(x) and K_(y).Finally,the energy bands are plotted in terms of the wave vectors K_(x) and K_(y) with and without the magnetic term.
机构地区 Department of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期170-178,共9页 中国物理B(英文版)
  • 相关文献

二级参考文献20

  • 1Greiner W 2000 Relativistic Quantum Mechanics (Berlin: Springer).
  • 2Hamzavi M and Rajabi A A 2013 Hindawi Publishing Corporation Advances in High Energy Physics 2013 987632.
  • 3Ginocchio J N, Leviatan A, Meng J and Zhou S G 2004 Phys. Rev. C 69 3.
  • 4Suparmi and Cari 2014 ITB Journal Publisher 46 205.
  • 5Suparmi A, Cari C and Angraini L M 2014 AIP Conf. Proc. 1615 111.
  • 6Zhou S G, Meng J and Ring P 2003 Phys. Rev. Lett. 91 262501.
  • 7Bahar M K and Yasuk F 2012 Chin. Phys. B 22 010301.
  • 8Hassanabadi H, Ikot A N and Zarrinkamar S 2014 Acta Phys. Polon. A 126 647.
  • 9Bakkeshizadeh S and Vahidi V 2012 Adv. Studies Theor. Phys. 6 733.
  • 10Hassanabadi H, Yazarloo B H and Salehi N 2013 Indian J. Phys. 88 405.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部