摘要
为了解决图像生成期间的问题(如显著区域内容扭曲、目标丢失等),文章提出加入显著性检测网络、设计显著性损失等策略,通过不断迭代优化网络,生成的图像在内容、风格和显著性方面都能达到较好的效果。
In order to solve the problems during image generation,such as distortion of salient region content and loss of targets,the article proposes strategies such as adding a saliency detection network and designing saliency loss.Through continuous iterative optimization of the network,the generated images can achieve good results in terms of content,style,and saliency.
作者
柴合丹
CHAI Hedan(Zhoukou Normal University,Zhoukou,Henan 466000,China)
出处
《计算机应用文摘》
2024年第15期180-182,共3页
Chinese Journal of Computer Application
关键词
深度学习
图像生成
风格迁移
deep learning
image generation
style migration