摘要
针对生态保护红线划定过程中存在边界不规整、内部地类矛盾难以协调等问题,提出“生态安全格局构建—生态保护红线优化—优化效果验证”的研究路径。以常州市金坛区为例,集成景观形态空间格局分析(MSPA)、InVEST模型、最小累计阻力模型(MCR)和重力模型(GM)等研究方法,构建区域生态安全格局;利用生态源地和生态廊道缓冲区对原国家级生态保护红线和原省级生态空间管控区进行优化;分别从景观连通性和空间协调性角度量化评价生态保护红线和生态管控区的优化效果。结果显示:①金坛区MSPA核心区面积为10833.64 hm^(2),与生态系统服务综合质量高和较高区域的分布范围相对一致。②最终识别生态源地9个,总规模9085.48 hm^(2),约占全域面积的9.31%,其中林地型6个,湖泊水库型3个,主要位于茅山森林公园、钱资荡湿地和长荡湖地区。③提取生态廊道共计41条,总长度达284.71 km,包括16条重要生态廊道和25条一般生态廊道,在茅山风景名胜区及周边分布较为密集。④优化后生态保护红线规模增加1700.57 hm^(2),可能连通性指数PC均值从22.10提高到25.06,整体连通性指数IIC均值从21.13提高到25.05,优化后生态管控区规模增加90.59 hm^(2),与耕地、建设用地冲突占比分别下降0.95%、0.57%。结果表明:该方法符合“功能不降低、面积不减少、性质不改变”的管控要求,可以作为生态保护红线优化的有效手段,为划定方案的完善提供有益借鉴。
In response to the challenges posed by boundary irregularity and coordination difficulty in internal land contradictions within the ecological protection red line during delineation,we propose a research framework encompassing“ecological security pattern constructionecological protection red line optimization-optimization effect verification”.Taking Jintan district in Changzhou city as a case study,this research utilizes methods such as Morphological Spatial Pattern Analysis(MSPA),InVEST model,Minimum Cumulative Resistance model(MCR),and Gravity model(GM)to establish the regional ecological security pattern.Then,the ecological source area and ecological corridor buffer zone are employed to optimize the original national ecological protection red line and the original provincial ecological space control area.Finally,the optimization effects of ecological protection red line and ecological space control area are quantitatively assessed in terms of landscape connectivity and spatial coordination.The results show that:(1)The core region of MSPA in Jintan covers an area of 10833.64 hectares,which is relatively consistent with the spatial distribution of high and moderately high comprehensive quality of ecosystem services.(2)The final identification of ecological source areas includes 9 sites,with a total area of 9085.48 hectares,accounting for approximately 9.31%of the entire region,which encompass six forest-type and three lakereservoir-type ecological source areas and are predominantly situated within Maoshan Forest Park,Qianzidang Wetland,and Changdang Lake region.(3)We have extracted a total of 41 ecological corridors with a combined length of 284.71 km,including 16 important ecological corridors and 25 general ecological corridors,which are distributed densely in the Maoshan Scenic Area and its surrounding areas.(4)After optimization,the ecological protection red line expanded by 1700.57 hectares,with the average PC index of potential connectivity increasing from 22.10 to 25.06 and the average IIC index of overall connectivity rising from 21.13 to 25.05.Additionally,the ecological sapce control area increased by 90.59 hectares,while the conflict ratios with cultivated land and built-up land decreased by 0.95%and 0.57%,respectively.The research findings demonstrate that the approach satisfies the control requirements of“no reduction in function,no reduction in area,and no change in nature”,which can serve as an effective means to optimize ecological protection red lines,offering valuable references for the improvement of delineation scheme.
作者
闫昊婷
乔伟峰
李语旻
李琛
YAN Haoting;QIAO Weifeng;LI Yumin;LI Chen(School of Geography,Nanjing Normal University,Nanjing 210023,China;Jiangsu Andi Space Information Technology Co.,Ltd,Nanjing 210019,China;Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing 210023,China;Nanjing Guotu Information Industry Co.,Ltd.,Nanjing 210019,China)
出处
《地理研究》
CSCD
北大核心
2024年第8期2141-2157,共17页
Geographical Research
基金
国家自然科学基金项目(42271264)。