期刊文献+

Extraction of fractures in shale CT images using improved U-Net

下载PDF
导出
摘要 Accurate extraction of pores and fractures is a prerequisite for constructing digital rocks for physical property simulation and microstructural response analysis.However,fractures in CT images are similar in grayscale to the rock matrix,and traditional algorithms have difficulty to achieve accurate segmentation results.In this study,a dataset containing multiscale fracture information was constructed,and a U-Net semantic segmentation model with a scSE attention mechanism was used to classify shale CT images at the pixel level and compare the results with traditional methods.The results showed that the CLAHE algorithm effectively removed noise and enhanced the fracture information in the dark parts,which is beneficial for further fracture extraction.The Canny edge detection algorithm had significant false positives and failed to recognize the internal information of the fractures.The Otsu algorithm only extracted fractures with a significant difference from the background and was not sensitive enough for fine fractures.The MEF algorithm enhanced the edge information of the fractures and was also sensitive to fine fractures,but it overestimated the aperture of the fractures.The U-Net was able to identify almost all fractures with good continuity,with an MIou and Recall of 0.80 and 0.82,respectively.As the image resolution increases,more fine fracture information can be extracted.
出处 《Energy Geoscience》 EI 2024年第2期240-248,共9页 能源地球科学(英文)
基金 funded by the Natural Science Basis Research Plan in Shaanxi Province of China(No.2022JM-147).
  • 相关文献

参考文献1

二级参考文献12

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部