期刊文献+

基于数字孪生的航班延误时间预测方法

Flight Delay Time Prediction Method Based on Digital Twins
下载PDF
导出
摘要 为了更加准确和高效地预测大面积航班延误时间,提出了基于数字孪生的航班延误时间预测方法。首先,从航班链整体的角度出发,依据航班运行业务特点和数字孪生技术特征设计了航班链数字孪生系统框架,综合航班链全生命周期内相关航班和机场的运行状态特征;其次,基于Fastformer和GraphSAGE模型设计了航班链时空特征提取模型(ST-Former),充分挖掘航班之间的时空关联特征。实验表明,该方法预测效率和准确度显著提升,平均预测误差在3 min左右。 In order to predict flight delays in large areas more accurately and efficiently,a flight delay prediction method based on digital twins is proposed.First,from the perspective of the flight chain as a whole,a flight chain digital twin system framework was designed based on the flight operation business characteristics and digital twin technology characteristics,integrating the operating status characteristics of relevant flights and airports during the entire life cycle of the flight chain.Secondly,a flight chain digital twin system framework was designed based on the Fastformer and GraphSAGE models designed a flight chain spatio-temporal feature extraction model(ST-Former)to fully explore the spatio-temporal correlation features between flights.Experiments showed that the prediction efficiency and accuracy of this method were significantly improved,and the average prediction error was within 3 minutes.
作者 丁建立 黄辉 曹卫东 DING Jian-li;HUANG Hui;CAO Wei-dong(Civil Aviation University of Chain,Tianjin 300000,China)
机构地区 中国民航大学
出处 《航空计算技术》 2024年第4期49-53,共5页 Aeronautical Computing Technique
基金 国家自然科学基金重点项目资助(U2233214,U2033205)。
关键词 航班延误预测 数字孪生 时空关联特征 Fastformer GraphSAGE flight delay prediction digital twin spatio-temporal feature Fastformer GraphSAGE
  • 相关文献

参考文献9

二级参考文献38

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部