期刊文献+

基于ORB-SLAM3的多旋翼室内定位方法研究

Research on indoor positioning method of multiple rotors method based on ORB-SLAM 3
下载PDF
导出
摘要 多旋翼无人机作为最常见的空中机器人,在电力巡检、气象探测、公路巡视、灾后救援、航拍等诸多领域发挥着重要的作用。在室内GNSS信号拒止环境中,基于视觉或激光雷达前端的同时定位与建图(SLAM)方法的实时定位方法越来越受到关注。文章利用数据集验证了紧耦合的ORB-SLAM 3双目/IMU算法在不同场景、不同光照以及不同运动状态下无人机的定位精度以及鲁棒性。实验表明,算法可实现厘米级的全局定位精度,并且在快速运动导致的图像模糊的情况下,仍能保持精确地跟踪,具有较好的鲁棒性。 Multi-rotor UAVs,as the most common aerial robots,play an important role in many fields such as power inspection,weather detection,highway patrol,post-disaster rescue,and aerial photography.However,in indoor environments such as GNSS signal rejection,real-time localization methods based on vision or LIDAR front-end simultaneous localization and map building(SLAM)methods have received increasing attention.In this paper,we utilize a dataset to validate the positioning accuracy as well as the robustness of the tightly coupled ORB-SLAM 3 binocular/IMU algorithm for UAVs in different motion states.Experiments show that the algorithm can achieve centimeter-level global localization accuracy and maintain accurate tracking with good robustness under image blurring caused by fast motion.
作者 井济民 刘佳兴 张超程 JING Jimin;LIU Jiaxing;ZHANG Chaocheng(No.208 Research Institute of China Ordnance Industries,Beijing 102202,China)
出处 《中国高新科技》 2024年第14期35-38,共4页
关键词 多旋翼 同时定位和建图 ORB-SLAM3 multi-rotor simultaneous positioning and mapping ORB-SLAM 3
  • 相关文献

参考文献1

二级参考文献87

  • 1Smith R C, Cheeseman P. On the representation and estimationof spatial uncertainty[J]. International Journal of Robotics Research,1986, 5(4):56-68.
  • 2Smith R, Self M, Cheeseman P. Estimating uncertain spatialrelationships in robotics[M] //Autonomous Robot Vehicles. NewYork: Springer, 1990: 167-193.
  • 3Durrant-Whyte H, Bailey T. Simultaneous localization andmapping: Part I[J]. IEEE Robotics & Automation Magazine,2006, 13(2): 99-110.
  • 4Bailey T, Durrant-Whyte H. Simultaneous localization andmapping(SLAM): Part II[J]. IEEE Robotics & AutomationMagazine, 2006, 13(3): 108-117.
  • 5Hartley R, Zisserman A. Multiple view geometry in computervision[M]. Cambridge: Cambridge University Press, 2004.
  • 6Aulinas J, Petillot Y R, Salvi J, et al. The SLAM problem: asurvey[J]. CCIA, 2008, 184(1): 363-371.
  • 7Ros G, Sappa A, Ponsa D, et al. Visual SLAM for driverlesscars: a brief survey[C] //Proceedings of IEEE Workshop onNavigation, Perception, Accurate Positioning and Mapping forIntelligent Vehicles. Los Alamitos: IEEE Computer SocietyPress, 2012: Article No.3.
  • 8Triggs B, Mclauchlan P F, Hartley R I, et al. Bundle adjustment -a modern synthesis[C] //Proceedings of International Workshopon Vision Algorithms: Theory and Practice. Heidelberg: Springer,1999: 298-372.
  • 9Indelman V, Williams S, Kaess M, et al. Information fusion innavigation systems via factor graph based incremental smoothing[J]. Robotics and Autonomous Systems, 2013, 61(8): 721-738.
  • 10Forster C, Carlone L, Dellaert F, et al. IMU preintegration onmanifold for efficient visual-inertial maximum-a-posterioriestimation [C] //Proceedings of Robotics: Science and Systems.Rome: Robotics: Science and Systems, 2015: Article No.6.

共引文献164

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部