期刊文献+

平面凸体的Wulff曲率积分不等式

Integral inequality of Wulff curvature for plane convex bodies
原文传递
导出
摘要 本文主要研究平面上Wulff流情形下的Wulff曲率积分不等式。利用Green-Osher不等式和Wulff-Steiner多项式获得了对称与非对称凸体的任意次幂的Wulff曲率积分不等式。特别地,当其中一凸体为单位圆时,获得了平面凸曲线任意次幂的曲率积分不等式。 In this paper,we mainly study the integral inequality of Wulff curvature in the case of Wulff flow on the plane.By using Green-Osher inequality and Wulff-Steiner polynomials,we obtain the Wulff curvature integral inequality of any power of symmetric and nonsymmetric convex bodies.Specifically,when one of the convex bodies is an unit circle,the curvature integral inequality of any powers of the plane convex curve is obtained.
作者 王亚玲 董旭 曾春娜 Yaling WANG;Xu DONG;Chunna ZENG(School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2024年第8期113-117,126,共6页 Journal of Shandong University(Natural Science)
基金 重庆英才青年拔尖计划资助项目(CQYC2021059145) 重庆市研究生科研创新资助项目(CYS23412) 重庆市教育委员会科学技术研究项目(KJQN201900530,KJZD-K202200509)
关键词 凸体 Steiner多项式 Green-Osher不等式 Wulff曲率 Wulff-Steiner多项式 convex body Steiner polynomial Green-Osher inequality Wulff curvature Wulff-Steiner polynomial
  • 相关文献

参考文献3

二级参考文献32

  • 1Burago Y. D., Zalgaller V. A., Geometric Inequalities, New York: Springer-Verlag, 1988.
  • 2Zhou J., On the Willmore deficit of convex surfaces, Lectures in Appl. Math. of Amer. Math. Soc., 1994, 8: 279-287.
  • 3Zhou J., On Willmore inequalities for submanifolds, Canadian Mathematical Bulletin, 2007, 50(3): 474-480.
  • 4Zhou J., The Willmore functional and the containment problem in R^4, Science in China Series A: Mathematics, 2007, 50(3): 325-333.
  • 5Zhou J., On Bonnesen-Type inequalities, Acta Mathematiea Siniea, Chinese Series, 2006, 50(6): 1397-1402.
  • 6Zhou J., Chen F., The Bonnesen-type inequalities in a plane of constant curvature, Jouunal of Korean Math. Seo., 2007, 44(6): 1363-1372.
  • 7Zhou J., New curvature inequalities for curves, Inter. J. of Math., Comp. Sci. & Appl., 2007, 1(1/2): 145-147.
  • 8Zhang G., Zhou J., Containment Measures in Integral Geometry, Integral Geometry and Convexity, Singapore: World Scientific, 2005.
  • 9Montiel S., Ros A., Compact hypersurfaces: the Alexandrov theorem for higher order mean curvature, Diff. Geom., Pitman Monogr Surveys Pure Appl. Math., Longman Sci. Tech, Harlow, 1991, 52: 279-296.
  • 10Osserman R., Curvature in the eighties, Amer. Math. Monthly, 1990, 97(8): 731-756.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部