摘要
数字孪生技术已经成为了工业制造中最新的研究热点之一。本文旨在探讨数字孪生技术在柴油发动机故障诊断方面的应用。首先,本文介绍了数字孪生技术的基本概念和原理,包括模型构建、数据采集和仿真分析等方面。然后,本文详细阐述了数字孪生技术在柴油发动机故障诊断方面的应用,包括基于传感器数据的实时监测、基于复杂模型的故障诊断和预测性维护等方面。最后,本文基于试验数据,通过机器学习算法,实现了对柴油发动机排气温度的预测,可用于基于柴油发动机排气温度的故障诊断。
Digital twin technology has become one of the latest research hot spots in industrial manufacturing.The purpose of this paper is to explore the use of digital twin technology in diesel engine fault diagnosis.First,the paper introduces the basic concepts and principles of digital twin technology,including model building,data acquisition,and simulation analysis.The paper then elaborates on the application of digital twin technology in diesel engine fault diagnosis,including real-time monitoring based on sensor data,complex model-based fault diagnosis and predictive maintenance.Finally,based on test data,the prediction of diesel engine discharge temperature is achieved through machine learning algorithms and can be used for troubleshooting diesel engine discharge temperature based diagnostics.
作者
宋国梁
付文杰
Song Guo-liang;Fu Wen-jie(Electronic control and software research institute of Weichai Power Co.,Ltd,Shandong Weifang 261061)
出处
《内燃机与配件》
2024年第14期115-117,共3页
Internal Combustion Engine & Parts
关键词
发动机
数字孪生
机器学习
故障诊断
Engine
Digital twin
Machine learning
Fault diagnosis