期刊文献+

机床直线轴温度测点筛选与热误差预测方法

Method of Temperature Measuring Point Screening and Thermal Error Prediction for Feed Axis of Machine Tool
下载PDF
导出
摘要 为揭示数控机床直线进给轴温度场信息与热误差之间的非线性映射关系,提高热误差预测模型效率和精度,提出了基于鹈鹕优化算法(POA)与随机森林(RF)的直线轴热误差预测方法。首先,采用Featts聚类算法将温度测点进行聚类分组,通过Spearman相关性分析计算温度与热误差之间的相关程度及热敏感点;其次,使用POA优化算法对RF模型参数进行寻优,确定RF网络的最佳决策树数量及叶子数等;最后,在三轴铣床加工中心上进行实验验证。结果表明,使用Featts聚类算法与Spearman相关分析方法提高了模型精度,有效避免温度测点间的多重共线性。与传统的BP神经网络及RF网络相比,POA-RF预测网络的均方根误差分别降低了46%和43%。 To reveal the nonlinear mapping relationship between the temperature field information of the feed axis of the CNC machine tool and the thermal error,and to improve the efficiency and accuracy of thermal error prediction model,a thermal error prediction method of linear feed axis based on pelican optimization algorithm(POA)and random forest(RF)was proposed.First,the Featts clustering algorithm was used to cluster and group the temperature measurement points,Spearman correlation analysis was used to calculate the correlation degree between temperature and thermal error and heat sensitive points.Secondly,POA optimization algorithm was used to optimize the parameters of the random forest model to determine the optimal number of decision trees and leaves of the RF network Finally,experiments were carried out on a three-axis milling center.The results show that the Featts clustering algorithm and Spearman correlation analysis are used to improve the accuracy of the model and effectively avoid multicollinearity among temperature measurement points.Compared with traditional BP neural network and RF network,the root-mean-square error of POA-RF prediction network is reduced by 46%and 43%respectively.
作者 丁强强 郭世杰 苏哲 邹云鹤 唐术锋 DING Qiangqiang;GUO Shijie;SU Zhe;ZOU Yunhe;TANG Shufeng(School of Mechanical Engineering,Inner Mongolia University of Technology,Hohhot 010051,China;Inner Mongolia Key Laboratory of Special Service Intelligent Robotics,Inner Mongolia University of Technology,Hohhot 010051,China)
出处 《组合机床与自动化加工技术》 北大核心 2024年第8期22-27,32,共7页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金项目(52065053,52365058,52365064) 内蒙古关键技术攻关项目(2021GG0255) 内蒙古自治区高等学校创新团队发展计划支持项目(NMGIRT2213) 内蒙古自治区直属高校基本科研业务费项目(ZTY2023005,JY20230043) 内蒙古自治区高等学校青年科技英才支持计划项目(NJYT23043) 内蒙古自然科学基金项目(2023LHMS05018,2023LHMS05017)。
关键词 数控机床 直线轴热误差 温度测点筛选 热误差预测 POA-RF模型 CNC machine tool linear axis thermal error temperature measuring point screening thermal error prediction POA-RF model
  • 相关文献

参考文献11

二级参考文献89

  • 1谭峰,李成南,萧红,苏祖强,郑凯.基于LSTM循环神经网络的数控机床热误差预测方法[J].仪器仪表学报,2020,41(9):79-87. 被引量:46
  • 2戴野,尹相茗,魏文强,王刚,战士强.基于ANFIS的高速电主轴热误差建模研究[J].仪器仪表学报,2020(6):50-58. 被引量:13
  • 3傅建中,陈子辰.精密机械热动态误差模糊神经网络建模研究[J].浙江大学学报(工学版),2004,38(6):742-746. 被引量:37
  • 4BRYAN J B. International status of thermal error research [ J ]. Annals of CIRP, 1990, 39 (2), 645-656.
  • 5YANG Jun, SHI Hu, FENG Bin, et al. Applying Neural Network based on fuzzy cluster pre-processing to thermal error modeling for Coordinate Boring Machine [ J ]. Proceedings of the 47th CIRP Conference on Manufacturing Svstems. Windsor: [s.n.], 2014:698-703.
  • 6YANG Jun, ZHANG Dongsheng, FENG Bin, et al. Thermal-induced errors prediction and compensation for a coordinate boring machine based on time series analysis [ J ]. Mathematical Problems in Engineering, 2014 (6) : 1- 13.
  • 7JARNYY, OZISKI M N, BARDON J P. A general optimization method using adjoint equation for solving multidimensional inverse heat conduction [ J ]. International Journal of Heat Mass Transfer', 1991, 34( 11): 2911- 2919.
  • 8MONDE M. Analytical method in inverse heat transfer problem using Laplace transform technique [ J ]. International Journal of Heat Mass Transfer, 2000, 43 (21 } : 3965-3975.
  • 9JALALI-HERAVI M, FATEMI M H. Prediction of thermal conductivity detection response factors using an artificial neural network [ J ]. Journal of Chromatography A, 2000, 897(1/2) : 227-235.
  • 10BOSSMANNS B, TU J F. A thermal modle for high speed motorized spindles [ J ]. International Journal of Machine Tools and Manufacture, 1999,39 (9) : 1345-1366.

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部